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De�nition (Taylor Model)
Let f : D � Rv �! R be a function that is (n+ 1) times continuously partially
di¤erentiable on an open set containing the domain D. Let x0 be a point in D
and P the n� th order Taylor polynomial of f around x0. Let I be an interval
such that

f (x) 2 P(x � x0) + I for all x 2 D.
Then the pair (P, I ) is called an n� th order Taylor model of f around x0 on D.

De�nition
For an n-th order Taylor model T = (P, I ) and k = 1, . . . , v , let

Qk =
Z xk
0
P(n�1) (x1, . . . , xk�1, ξk , xk+1, . . . , xv ) dξk .

The antiderivative ∂�1k of T is de�ned by

∂�1k (P, I ) =
�
Qk ,

�
B
�
P(n) � P(n�1)

�
+ I
�
� 2
�
.

D is [�1, 1]v � Rv .
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The Taylor Model integration

Finite integration of a Taylor model,

J(v�1) =
Z 1
�1
T v
�
x1, . . . xk�1, ξk ,xk+1, . . . , xv

�
dξk ,

Steps to compute the Taylor model J(v�1) using the antiderivative ∂�1ξ1
operator.

1 Split the Taylor Model T v = (P, I ) in to a polynomial P of order n and
interval I .

2 Construct a new Taylor model G v = (P, Iε), where Iε = [0, 0].
3 Apply the antiderivative operator ∂�1ξ1

to the Taylor model G v .

4 Evaluate the Taylor models ∂�1ξ1
G v (at ξ1 = 1) and ∂�1ξ1

G v (at ξ1 = �1)
and subtract them to obtain a new Taylor model Rv�1.

5 Add the interval 2 � I to the Taylor model Rv�1 to give the Taylor model
after integration with respect to the ξ1 variable.

The steps 1 through 5 can be repeated for the integration in more than one
variable.
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The Poisson Problem

Goal: Determine an accurate solution of the Poisson equation when derivatives of
the solution are speci�ed on the boundary

r2φ
0
(~r) = ρ (~r) in the bounded volume Ω � E3

rφ
0
(~r) = ~g (~r) on the surface ∂Ω

Motivation: Modelling space charge e¤ects in Accelerators, Extraction of
tranfer maps

Splitting the problem

φ
0
(~r) = φ (~r) + ψ (~r)

The potential ψ (~r) satis�es the Poisson equation

r2ψ (~r) = ρ (~r) in the bounded volume Ω � E3

The potential φ (~r) is the solution to the Laplace equation

r2φ (~r) = 0 in the bounded volume Ω � E3

rφ (~r) = ~g (~r)�rψ (~r) on the surface ∂Ω
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The solution for ψ can be found using

ψ (~r) =
Z
V

1
4πε0

ρ
�
~r
0
�

��~r �~r 0 ��dΩ
0
,

Hence the Poisson BVP translates to solving the Laplace BVP

The above splitting is good for electrostatic problems. However, similar
treatment can be done for magnetostatic problems (the potential satis�es
Ampere�s equation). The method developed hold for both the electrostatic
and magnetostatic case.
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The Laplace BVP

r2φ (~r) = 0 in the bounded volume Ω � E3

rφ (~r) = ~g (~r) on the surface ∂Ω

Goal:

Provide solution as local expansion of the �eld ( φ (�!r ) and ∂nxi φ (
�!r ))

Highly accurate and work for case with large variation of �eld in the region of
interest

Computationally inexpensive

Provide information about the �eld quality of measured data

Analytic closed form solution can only be found for few problems with certain
regular geometries (separation of variables method, power series, �nite Fourier
transform)
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Numerical Methods

Finite Di¤erence, Finite element methods

Numerical solution as data set in the region of interest
Relatively low approximation order
Often large number of mesh points and careful meshing required
Usually multipole expansion of the �eld can not be computed

Methods using surface data

Boundary integral methods and source-based �eld models

Require knowledge of Green�s function for the problem
Field inside of a source free volume due to a real sources outside of it can be
exactly replicated by a distribution of �ctitious sources on its surface. Error due
to discretization of the source falls o¤ rapidly as the �eld point moves away
from the source.

Methods using the Helmholtz theorem

S.L. Manikonda, M. Berz, K. Makino (Argonne National Laboratory Michigan State University)3-D Poisson Solver 7 / 22



The Helmholtz Theorem

Any vector �eld
�!
B that vanishes at in�nity can be written as the sum of two

terms, one of which is called �irrotational� and the other �solenoidal� as

�!
B (~x) = ~r�~At (~x) + ~rφn (~x) where

φn (~x) =
1
4π

Z
∂Ω

~n (~xs ) �
�!
B (~xs )

j~x �~xs j
ds � 1

4π

Z
Ω

~r � �!B (~xv )
j~x �~xv j

dV

~At (~x) = �
1
4π

Z
∂Ω

~n (~xs )�
�!
B (~xs )

j~x �~xs j
ds +

1
4π

Z
Ω

~r��!B (~xv )
j~x �~xv j

dV

∂Ω is a surface which bounds the volume Ω
~xs and ~xv denote points on ∂Ω and within Ω
~r denotes the gradient with respect to ~xv
~n is a unit normal vector pointing away from ∂Ω
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If ~B is the magnetic/electric �eld in the source free region, we have
~r��!B (~xv ) = 0 and ~r �

�!
B (~xv ) = 0, and the volume integral terms vanish

φn (~x) and ~At (~x) are completely determined from the normal and the
tangential �eld data on surface ∂Ω via

φn (~x) =
1
4π

Z
∂Ω

~n (~xs ) �
�!
B (~xs )

j~x �~xs j
ds

~At (~x) = �
1
4π

Z
∂Ω

~n (~xs )�
�!
B (~xs )

j~x �~xs j
ds

�!
B (~x) = ~r�~At (~x) + ~rφn (~x)

The Helmholtz theorem can be used to �nd �eld directly from the surface
�eld data

Integral kernels that provides interior �elds in terms of the boundary �elds or
source are smoothing

Since the expressions are analytic, they can be expanded at least locally
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Figure 2.4.1. The �gure shows a volume element centered at (x0; y0; z0) element and
a surface element (xs; ys; zs).

36

mls
Highlight

mls
Text Box



Implementation

1 Discretize the surface ∂Ω into individual surface cells Si with centers si and
the volume Ω into volume cells Vj with centers vj .

2 Pick a volume cell Vj .
3 For each surface cell Si , evaluate the kernels for φn and At using Taylor
model arithmetic to obtain a Taylor model representations in BOTH the
surface variables of Si AND the volume variables of Vj , i.e. in a total of �ve
variables.

4 Use the Taylor model anti-derivation operation twice to perform integration
over the surface variables of each cell Si .

The dependence on the surface variables (xs , ys ) are integrated over surface
sub-cells Γi , which results in a highly accurate integration formula
The dependence on the volume variables (x , y , z) are retained, which leads to
a high order �nite element method
By using su¢ ciently high order, high accuracy can be achieved with a small
number of surface elements

5 Add up all results to obtain a three dimensional Taylor model enclosing the
�eld ~B over the volume cell Vj .
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Analytic example: Bar magnet

Interior of the magnet: �0.5 � x � 0.5, jy j � 0.5, and -0.5 � z � 0.5
Analytic solution for the magnetic �eld are know
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Analytic solution

By (x , y , z) =
B0
4π

2

∑
i ,j=1

(�1)i+j
"
arctan

 
Xi � Zj
Y+ � R+ij

!
+ arctan

 
Xi � Zj
Y� � R�ij

!#

Bx (x , y , z) =
B0
4π

2

∑
i ,j=1

(�1)i+j
"
ln

 
Zj + R

�
ij

Zj + R
+
ij

!#

Bz (x , y , z) =
B0
4π

2

∑
i ,j=1

(�1)i+j
"
ln

 
Xj + R

�
ij

Xj + R
+
ij

!#

where Xi = x � xi , Y� = y0 � y , Zi = z � zi , and R�ij =
�
X 2i + Y

2
j + Z

2
�
� 1
2

Using the analytic formulas we specify magnetic �eld on the surface enclosing
the volume of interest

We use the Helmholtz method to compute the �eld inside

We compare the results with the analytic formulas (three plots)
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Figure 2.4.1. The �gure shows a volume element centered at (x0; y0; z0) element and
a surface element (xs; ys; zs).
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Performance of surface integration method

Choose a cube of edge length 0.8 centered at origin
each face is covered by 44� 44 mesh (surface elements)
Field data is speci�ed on the surface mesh using analytic formulas
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Split the cube into 4� 4� 4 volume elements of width 0.2
Express magnetic �eld in each volume element by a local expansion about the
center of the element

The RMS average error for 1000 points
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Dependency of the average error on the number of volume element.
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Parallel implementation

Contribution due to each surface element is independent of the other surface
elements

The large summation over all the surface elements can be parallelized

NERSC (National Energy Research Scienti�c Computing Center) IBM
RS6000 Seaborg Cluster consisting of 6080 processors

380 computing nodes with each node having 16 processors (shared memory
pool of 16 to 64 GBytes)
Communication between the processors within a node is much faster

Implementation

(NPR processors) = (N2 groups)�(N1 processors)
N1 = INT

�
2 �
p
NPR

�
Two parallel loop are used to make the summation e¢ cient and also minimizes
cross-communication
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{Loop over N2 groups}
PLOOP JJ 1 N2;

{Loop over N1 processors}
PLOOP II 1 N1;

{Evaluate the processor number PP}
PP:=II+(JJ-1)*N1;

[Code to identify the surface elements JBEG through JEND
for which the processor PP will evaluate the partial sum]

{Loop to compute the partial sum of the scalar and vector potential
contributions over surface elements JBEG through JEND}
LOOP IL JBEG JEND;

...
[Code to compute the scalar and the vector potential
contribution of a surface element IL.]

...
ENDLOOP;

{End the parallel loop over the group of N1 processors and
send the results to sub-master processor using communication mode 4}
ENDPLOOP 4 PN1_SCLPOT PN1_VECPOT;

{Loop to evaluate group partial sum of N1 processors}
LOOP II 1 N1;

...
[Summation to get group partial sum GN2_SCLPOT and GN2_VECPOT ]
...

ENDLOOP;

{End the parallel loop over the N2 groups and send the results to master processor}
ENDPLOOP 4 GN2_SCLPOT GN2_VECPOT;

{Loop to evaluate sum over N2 groups}
LOOP JJ 1 N2;

...
[Summation to get sum SCLPOT and VECPOT ]
...

ENDLOOP;

[Code to evaluate the divergence of SCLPOT and the curl of VECPOT and sum them
to get the magnetic �eld ]

Table 3.3.1. The code for the parallel algorithm.
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1 To study the dependency of the Interval part of the potentials and ~B �eld on
the surface element length

All of the volume is considered as just one volume element
Examine contributions of each surface element towards the total integral

Expansion is done at ~r = (.1, .1, .1) and
Plot of interval width VS surface element length for scalar potential

Plot of interval width VS Order for di¤erent surface element length for x
component of Magnetic �eld

2 Study the dependency of the Interval part of the B �eld on the volume
element length

The surface element length is locked at 1/128
Plot of interval width VS volume element length for y component of Magnetic
�eld
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ψ (~r) =
Z
V

1
4πε0

ρ
�
~r
0
�

��~r �~r 0 ��dΩ
0
,

2D Example: Elliptic beam with constant charge density:

E (x) =
4λ

a2 � b2
�
z̄ �

�
z̄2 � a2 + b2

�1/2
�

outside

=
4λ

a2 � b2
�
bx
a
+ i
ay
b

�
inside

For point ( 2, -1) where the �eld is Ex=0.804087298,
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