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Example

An extremely simplifiedmodel of someQCDoptimization problems, scaled
down to 2D for the illustration. Find the minimum of the function f(x, y):

f(x, y) = cosx cos y − 2 exp
£
−500 ·

¡
(x− 1)2 + (y − 1)2

¢¤



f(x,y) = cos(x)*cos(y)-2*exp[-500*((x-1)^2+(y-1)^2)]
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f(x,y) = cos(x)*cos(y)-2*exp[-500*((x-1)^2+(y-1)^2)]
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Example

An extremely simplifiedmodel of someQCDoptimization problems, scaled
down to 2D for the illustration. Find the minimum of the function f(x, y):

f(x, y) = cosx cos y − 2 exp
£
−500 ·

¡
(x− 1)2 + (y − 1)2

¢¤
• A spike on top of the periodic cos behavior.

min = −1.70817675216072639 at x = y = 1.00022729285.



Example

An extremely simplifiedmodel of someQCDoptimization problems, scaled
down to 2D for the illustration. Find the minimum of the function f(x, y):

f(x, y) = cosx cos y − 2 exp
£
−500 ·

¡
(x− 1)2 + (y − 1)2

¢¤
• A spike on top of the periodic cos behavior.

min = −1.70817675216072639 at x = y = 1.00022729285.

• Use various local optimization algorithms
Simulated Annealing, Simplex, LMDIF (available as “FIT” in COSY)

Algorithm Without Constraint Constraint |x|, |y| ≤ 4
Steps min Steps min

Simulated Annealing 1000 ∼ −1
Simplex 130 ∼ −1
LMDIF 27 ∼ 0
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Example

An extremely simplifiedmodel of someQCDoptimization problems, scaled
down to 2D for the illustration. Find the minimum of the function f(x, y):

f(x, y) = cosx cos y − 2 exp
£
−500 ·

¡
(x− 1)2 + (y − 1)2

¢¤
• A spike on top of the periodic cos behavior.

min = −1.70817675216072639 at x = y = 1.00022729285.

• Use various local optimization algorithms
Simulated Annealing, Simplex, LMDIF (available as “FIT” in COSY)

Algorithm Without Constraint Constraint |x|, |y| ≤ 4
Steps min Steps min

Simulated Annealing 1000 ∼ −1 1000 10−2 accurate
Simplex 130 ∼ −1 130 ∼ −1
LMDIF 27 ∼ 0 57 ∼ −1
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Example

An extremely simplifiedmodel of someQCDoptimization problems, scaled
down to 2D for the illustration. Find the minimum of the function f(x, y):

f(x, y) = cosx cos y − 2 exp
£
−500 ·

¡
(x− 1)2 + (y − 1)2

¢¤
• A spike on top of the periodic cos behavior.

min = −1.70817675216072639 at x = y = 1.00022729285.

• Use various local optimization algorithms
Simulated Annealing, Simplex, LMDIF (available as “FIT” in COSY)

Algorithm Without Constraint Constraint |x|, |y| ≤ 4
Steps min Steps min

Simulated Annealing 1000 ∼ −1 1000 10−2 accurate
Simplex 130 ∼ −1 130 ∼ −1
LMDIF 27 ∼ 0 57 ∼ −1

• Use COSY-GO (verified global optimizer)
In the search domain [−4, 4]× [−4, 4]
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Example

An extremely simplifiedmodel of someQCDoptimization problems, scaled
down to 2D for the illustration. Find the minimum of the function f(x, y):

f(x, y) = cosx cos y − 2 exp
£
−500 ·

¡
(x− 1)2 + (y − 1)2

¢¤
• A spike on top of the periodic cos behavior.

min = −1.70817675216072639 at x = y = 1.00022729285.

• Use various local optimization algorithms
Simulated Annealing, Simplex, LMDIF (available as “FIT” in COSY)

Algorithm Without Constraint Constraint |x|, |y| ≤ 4
Steps min Steps min

Simulated Annealing 1000 ∼ −1 1000 10−2 accurate
Simplex 130 ∼ −1 130 ∼ −1
LMDIF 27 ∼ 0 57 ∼ −1

• Use COSY-GO (verified global optimizer)
In the search domain [−4, 4]× [−4, 4], the minimum is found with 10−14
accuracy in 129 steps. The minimizer is localized in the volume 5 ·10−17.



The TM based Global Optimizer, COSY-GO
has utilized various algorothms based on Taylor models.

• LDB (Linear Dominated Bounding) bounding and domain reduction
• QFB (Quadratic Fast Bounding) bounding and domain reduction for
positive definate cases (Quadratic pruning)

• Various cutoff value update schemes



Quadratic Pruning - The Idea
Extract a convex quadratic part P2 of Taylor model, write

f(x) ∈ P2(x) +R(x) + I where

P2(x) =
1

2
xt ·H · x

Want to confine the region P2(x) ≤ a with a > 0, by an interval box
[−xm, xm] with xm > 0.
Because of positive definiteness and convexity, this region is inside a
closed ellipsoidal contour surface P2(x) = a. The optimal confining
interval box touches such a region at each box side surface tangentially, so
the condition to find xm is ∇f is normal to the corresponding box surface;
namely for determining the k-th component xmk,

(∇P )i = 0 for ∀i 6= k.
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The TM based Global Optimizer, COSY-GO
has utilized various algorothms based on Taylor models.

• LDB (Linear Dominated Bounding) bounding and domain reduction
• QFB (Quadratic Fast Bounding) bounding and domain reduction for
positive definate cases (Quadratic pruning)

• Various cutoff value update schemes
And, we have completed

• Adjustment to pallarel environments with low inter-processoer commu-
nication rate

• Restart capability
• Continuation of computations while the underlying arithmetic fails
• COSY INFINITY Version 9.0 has been released



Some General Thoughts about Rigorous Parallel Op-
timization

1. Performance gains inmodern computing are gained throughmulti-processor
architectures, not increased clock speed and more efficient microcode.

2. While the global optimization task does not parallelize trivially, with due
care it is manageable

Caveats:

1. Communication mode, in particular for large numbers of processors -
point to point, master - slave, common meeting?

2. Load balancing, in particular with many processors and slow connections



COSY-GO in Parallel Environment
Design aspects of COSY-GO-P

1. Utilize MPI and be standard. This is done with a COSY language con-
struct calledPLOOP, a parallel loop with various types inter-processor
updates upon conclusion. Can be nested.

2. Should scale from for different numbers of processors

(a) multiple cores in a chip
(b) large clusters with thousands of processors

3. Should scale for different connection speeds

(a) extremely fast interconnect (multiple cores in one chip)
(b) very fast (a few cores in a "node" with a nearly bus-like interconnect)
(c) fast (specialized network for parallel use, at least Gigabit)
(d) slow (grid-based systems - geographicly dispersed, relying on standard
Internet)



Basic Ideas of the COSY-GO Parallel Environment

1. List Management: Each processor has two lists:

(a) Short List of large boxes, shared with other processors
(b) A section of Short List is pre-allocated to each processor.
(c) Long List of regular boxes owned by each processor.
(d) Long List is kept in moderately strict order of difficulty. Achieved by
selection strategy favoring newer boxes

2.Communication Concept

(a) Processors communicate in sheduled meeting mode after pre-
determined fixed time interval Tm.

(b) Time interval Tm is determined by trial and error for each environment
under consideration. Single node: fraction of second, Berkeley NERSC
cluster (~6000 processors): 1-2 minutes, Grid systems: fractions of
hours.



What Happens in a Meeting

1.Assess status. Gather short data from each processor, scatter this
information to all others. Cutoff updates, number of remaining large
boxes and small boxes

2.Processing of results. Global cutoff is updated; it is determined if
we can stop code

3.Processing of status. Each processor simultaneously identifies

(a) how many boxes Nr are needed to replenish Short List
(b) Let Np = Nr/Nproc

4. Load balancing.

(a) Each processor uploads its Np largest boxes, if available, to the Short
List

(b) The Short List is randomized, so that the sections allocated to each
processor are roughly of similar complexity



What Happens Between Meetings

1. Each processor splits its time between

(a) working on its Long List of boxes. For each box, perform a sequence of
tests: interval evaluation rejection test; Taylor model evaluation: LDB,
QFB bounders, Gradient-based box rejection with Gradient Taylor
models

(b) performing non-rigorous global search (currently via genetic algorithm)
in its assigned search space of global boxes, as well as neighboring
global boxes

2. If Long List of boxes is exhausted, retrieve a box from the processor’s
section on the Short List

3. If processor’s section on Short List is exhausted, continue to perform
non-rigorous global search as in 1b.

4. After appropriate time, join next meeting.



The TM based Global Optimizer, COSY-GO
has utilized various algorothms based on Taylor models.

• LDB (Linear Dominated Bounding) bounding and domain reduction
• QFB (Quadratic Fast Bounding) bounding and domain reduction for
positive definate cases (Quadratic pruning)

• Various cutoff value update schemes
And, we have completed

• Adjustment to pallarel environments with low inter-processoer commu-
nication rate

• Restart capability
• Continuation of computations while the underlying arithmetic fails
• COSY INFINITY Version 9.0 has been released
And, what we are doing further...

• High-order derivative based box rejection and the domain reduction
• Supporting high multiple precision computations for TMs



Outer and Inner Enclosures using Taylor Models
Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(x, y)|x2 + y2 ∈ [1, 2]} given by

f(x, y) =

½
xy

x + y

Using Taylor models:

• Representing the domain R using Taylor models as
(x, y) = (r cos(φ), r sin(φ)) where (r, φ) ∈ [1,

√
2]× [0, 2π] = D.



Outer and Inner Enclosures using Taylor Models
Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(x, y)|x2 + y2 ∈ [1, 2]} given by

f(x, y) =

½
xy

x + y

Using Taylor models:

• Representing the domain R using Taylor models as
(x, y) = (r cos(φ), r sin(φ)) where (r, φ) ∈ [1,

√
2]× [0, 2π] = D.

• Split D in 8 subdomains to represent f by 8 Taylor models of order 5.
→ width(I) < 0.03; the outer and inner enclosures are indistinguishable.
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Outer and Inner Enclosures using Taylor Models
Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(x, y)|x2 + y2 ∈ [1, 2]} given by

f(x, y) =

½
xy

x + y

Using Taylor models:

• Representing the domain R using Taylor models as
(x, y) = (r cos(φ), r sin(φ)) where (r, φ) ∈ [1,

√
2]× [0, 2π] = D.

• Split D in 8 subdomains to represent f by 8 Taylor models of order 5.
→ width(I) < 0.03; the outer and inner enclosures are indistinguishable.

• ... 16× 2 subdomains, ... by 32 TMs of order 5.



-2

-1

0

1

2

-2 -1 0 1 2

Region 1=< r^2 =< 2 expressed by TMs (5th order)



-2

-1

0

1

2

-2 -1 0 1 2

fx=x*y, fy=x+y, mapped by TMs in 1=< r^2 =< 2 (5th order)



Outer and Inner Enclosures using Taylor Models
Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(x, y)|x2 + y2 ∈ [1, 2]} given by

f(x, y) =

½
xy

x + y

Using Taylor models:

• Representing the domain R using Taylor models as
(x, y) = (r cos(φ), r sin(φ)) where (r, φ) ∈ [1,

√
2]× [0, 2π] = D.

• Split D in 8 subdomains to represent f by 8 Taylor models of order 5.
→ width(I) < 0.03; the outer and inner enclosures are indistinguishable.

• ... 16× 2 subdomains, ... by 32 TMs of order 5.
• ... 8 subdomains, ... by 8 TMs of order 1.
→ width(I) ' 0.9; the inner representations of f are empty sets.
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Outer and Inner Enclosures using Taylor Models
Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(x, y)|x2 + y2 ∈ [1, 2]} given by
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½
xy
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• Representing the domain R using Taylor models as
(x, y) = (r cos(φ), r sin(φ)) where (r, φ) ∈ [1,

√
2]× [0, 2π] = D.

• Split D in 8 subdomains to represent f by 8 Taylor models of order 5.
→ width(I) < 0.03; the outer and inner enclosures are indistinguishable.

• ... 16× 2 subdomains, ... by 32 TMs of order 5.
• ... 8 subdomains, ... by 8 TMs of order 1.
→ width(I) ' 0.9; the inner representations of f are empty sets.
• ... 16× 2 subdomains, ... by 32 TMs of order 1.
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High-Order Verification of Exteriority of Points
Goal: Decide whether a point c is outside the range of f(D);

c /∈ f(D).

Scheme:
Have a Taylor model representation f(x) ∈ P (x) + I for all x ∈ D.
Let C = P (0) and P≥1(x) = P (x)− C.
Then we want to assert that there is no x ∈ D with c−C ∈ P≥1(x) + I.
Determine the order n inverse P≥1∗ to P≥1, and apply it to both sides:

P≥1∗(c− C) ∈ P≥1∗(P≥1(x) + I) ⊂ I + I∗ ⊂ D + I∗.

So, if it can be shown that

P≥1∗(c− C) /∈ D + I∗,

then c /∈ f(D).



High-Order Verification of Interiority of Points
Goal: Decide whether a point c is inside the range of f(D);

c ∈ f(D).

Scheme:
Very similar to the previous scheme for an exteriority test.
If it can be shown that

P≥1∗(c− C) ∈ D + I∗,

then c ∈ f(D). In this case, however, P≥1∗ has to be shown to be injective
(for example by factoring out linear part, and showing that resulting identity
plus higher orders has strictly positive slopes).



High-Order Verification of Interiority of Points
Goal: Decide whether a point c is inside the range of f(D);

c ∈ f(D).

Scheme 2:
Have a Taylor model representation f(x) ∈ P (x)+I for all x ∈ D, and let

r(x) = f(x)−P (x), where r(x) ∈ I. Let C = P (0) and P≥1(x) = P (x)−C.
We attempt to assure the existence of a point s ∈ D : f(s) = c, which is
equivalent to

c− C = P≥1(s) + r(s).

Determine the order n inverse P≥1∗ to P≥1. Let

s0 = P≥1∗(c− C),

an approximation for a solution s, and it is likely s0 ∈ D. If not, move s0
towards the center of D.
Now we introduce a change of variables s̄ = s− s0.
Let L̄ denote the linear part of P≥1(s0+ s̄) in s̄, and let L̄∗ be an approx-
imate non-singular inverse of L̄. Then the problem is equivalent to

c− C = P≥1(s0 + s̄) + r(s0 + s̄), or
I(s̄) = L̄∗

£
c− C − (P≥1(s0 + s̄) + r(s0 + s̄))

¤
+ I(s̄).



I(s̄) = L̄∗
£
c− C − (P≥1(s0 + s̄) + r(s0 + s̄))

¤
+ I(s̄).

Compute the RHS by TM arithmetic ( r(s0 + s̄) by 0 + I ). We obtain a
fixed point problem in s̄:

I(s̄) = R(s̄) + If.

Observe that the zeroth order and the linear parts of R(s̄) have very small
coefficients. By bounding them by an interval IR,

I(s̄) = R≥2(s̄) + IR + If.

Now we attempt to find an interval S̄ :

S̄ ⊃ A(S̄) = R≥2(S̄) + IR + If.

If such S̄ is found, S̄ contains a fixed point (via Brower FP theorem). Then
we have found a solution of the original problem as long as s0 + S̄ ⊆ D.

c ∈ f(s0 + S̄), thus c ∈ f(D).

Note: For a small interval S̄, R≥2(S̄) is a much smaller interval. Choosing
S̄ as a small multiple of the interval (If+IR) will likely lead to an immediate
self enclosure, which will scale with order (n + 1) of the domain size.



Properties:

1. Given a TMP+I describing the function f overD, the problemof decid-
ing interiority is transformed to a FP problem. The occurring intervals
are comparable in size to the small remainder I. Since only quadratic
and higher order terms appear in the FP problem, the method is very
likely to succeed as long as I is sufficiently small.

2. The resulting enclosure of the FP scales with the width of I, and hence
with order (n + 1) of the domain D.

3. The setup of this FP problem requires only limited inexpensive addi-
tional TM arithmetic beyond the computation of the TM representing
the original function f. In particular, using an intrinsic tool for Horner
shifts, no TM multiplications are necessary.

4. Unlike conventional interval-Newton methods, the approach does not
require the inversion of any interval matrices, but only floating point
approximations to inverses of floating point matrices.



Example: Exteriority and Interiority of Points
Example: A crescent mapping (A. Goldsztejn and L. Jaulin, 2005)
The function f on R = {(x, y)|x2 + y2 ∈ [1, 2]} given by

f(x, y) =

½
xy

x + y

Using the discussed schemes:

• Study the distance of points verified barely outside and inside the range
of the function f(D).
Measure the distance along the vertical line through the point

(x, y) =

Ã
1

4
,

r
5

2

!
,

which is known to lie on the boundary.
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Gradient Taylor Models - Motivation
Conventional Taylor Model for f on D: Pair of Taylor polynomial P of f
and remainder I such that

f(x) ∈ P (x) + I for all x ∈ D

Many verified tools benefit from enclosures for derivatives of functions;
for example Global Optimization.
Frequently used: Automatic Differentiation with interval arguments
yields interval enclosure of derivatives
Similarly, can use Automatic Differentiation with Taylor Model argu-
ments to get Taylor model enclosures of derivatives.
But: the Taylor polynomial of ∂f/∂xi is just ∂P/∂xi (to one order less)
Thus: Knowing P from TM of f, we already know the bulk of the infor-
mation for the TMs of the gradient (to one order less)!
Idea: Save time by calculating only P, and not the Taylor polynomials
of the derivative.



The Gradient Taylor Model
Definition: Gradient Taylor model
For a function f(x) on D, we call the vector

(P, I, I1, . . . , Iv)

a gradient Taylor model of f, if ∀x ∈ D,

f(x) ∈ P (x) + I and
∂f(x)

∂xi
∈ ∂P (x)

∂xi
+ Ii for all i = 1, ..., v

Thus a gradient Taylor model for the function f consists of its Taylor poly-
nomial, a remainder bound, as well as remainder bounds for its partial
derivatives based on their Taylor polynomials of one order less.



Addition of Gradient Taylor Models
Assume we know gradient Taylor models for f and g, and thus on D, we
have

(f,∇f) ∈
µ
Pf + If,

∂Pf

∂xf1
+ If1, . . . ,

∂Pf

∂xfv
+ Ifv

¶
(g,∇g) ∈

µ
Pg + Ig,

∂Pg

∂xg1
+ Ig1, . . . ,

∂Pg

∂xgv
+ Igv

¶
.

Then we apparently also have

(f + g,∇f +∇g) ∈
µ
Pf + Pg + If + Ig,

∂Pf

∂xf1
+

∂Pg

∂xg1
+ If1 + Ig1,

...,
∂Pf

∂xfv
+

∂Pg

∂xgv
+ Ifv + Igv

¶
.

and thus (Pf +Pg, If + Ig, If1+ Ig1, ..., Ifv+ Igv) is a gradient Taylor model
for f + g.



Multiplication of Gradient Taylor Models
We compute the regular Taylor model part P(f ·g) and I(f ·g) as we do it for
regular Taylor models. For the remainder bounds, there are several ways
based on the product rule

∂

∂xi
(f · g) =

µ
∂

∂xi
f

¶
· g + f ·

µ
∂

∂xi
g

¶
. (1)

Method 1: Use
∂f

∂xi
∈ ∂Pf

∂xi
+ Ifi

and perform the computation of (1) in regular Taylor model arithmetic,
then get I(f ·g)i as the remainder of the arithmetic for (1).
This is simple, but wasteful as it always re-computes the polynomial parts
of the derivatives, which is unnecessary as they are merely derivatives of
Pf ·g.



Multiplication of Gradient TM - Remainders
Studying the details of Taylor Model multiplication, we see: To obtain the
remainder bound of the product, all we need are bounds for each order
I
(j)
f,i , I

(j)
g,i of the factors. Indeed, derivative remainder bounds I(f ·g),i are then

given by

I(f ·g),i =
nX

j=0

I
(j)
f,i
· I(≥n−j+1)g + I

(j)
f · I(≥n−j+1)g,i

Method 2a: Use the polynomial derivation operation to calculate each
of the gradient polynomials

∂Pf

∂xi
,
∂Pg

∂xi
and use the already existing tool for order bounding.
Relatively fast (polynomial derivation is essentially coefficient re-shuffling)
and optimally precise, given available information.



Multiplication of Gradient TM - Remainders
Method 2b: Observe that

I
(j+1)
f =

X
i1+···+iv=j+1

|ai1,...,ii,...,iv| and we also have

I
(j)
f,i =

X
i1+···+iv=j+1

|ii · ai1,...,ii,...,iv| =
X

i1+···+iv=j+1
ii · |ai1,...,ii,...,iv|

So, the order bounds of the derivative polynomials satisfy

I
(j)
f,i ⊂ I

(j+1)
f · (j + 1) (2)

Extremely fast (only re-use existing order bounds), but less precise.



Intrinsic Functions of Gradient Taylor Models

Problem: given gradient TM of f , want a gradient TM for int(f), where
int ∈ {sin, cos, exp, log,sqrt,...}.
Example: sin. Note

d

dxi
(sin(f)) = cos(f) · d

dxi
f

1. First factor: perform one additional intrinsic evaluation, compute order
bounds.

2. First factor: bulk of effort lies in computing powers of f, which are al-
ready available from sin(f) evaluation!

3. Second factor: Obtain order bounds directly, as above.

4. Determine derivative remainder bound as above from
Pn

j=0 I
(j)
f,i
·I(≥n−j+1)cos(f)



Generalizations of Gradient Taylor Models

1.Extremely Cheap: do not store I1, . . . , Iv, but only a single I 0 such
that

I1 ⊂ I 0, . . . , Iv ⊂ I 0

Particularly useful if combined with method 2b based on I
(j)
f,i ⊂ I

(j+1)
f ·

(j + 1), since all I(j)f,i will be the same already.

2.Higher Orders:Apparently the approach readily generalizes toHessian
Taylor models, or higher derivatives yet.

3.Cheap Higher Orders: Can be done economically, i.e. without large
numbers of remainder bounds, by using the "extremely cheap" storage
way.



Gradient Taylor Models - Summary

•We have shown how to simultaneously obtain Taylor models for the
function and its entire gradient.

• There are various ways of obtaining remainders, differing in sharpness,
speed, and storage

• Even the least sharp way yields good results, since TMremainder bounds
are usually so small.

• In all cases, the extra computational effort is minor, usually less than
10% beyond the normal cost of a Taylor model.

• Can be generalized to higher orders.



The TM based Global Optimizer, COSY-GO
has utilized various algorothms based on Taylor models.

• LDB (Linear Dominated Bounding) bounding and domain reduction
• QFB (Quadratic Fast Bounding) bounding and domain reduction for
positive definate cases (Quadratic pruning)

• Various cutoff value update schemes
And, we have completed

• Adjustment to pallarel environments with low inter-processoer commu-
nication rate

• Restart capability
• Continuation of computations while the underlying arithmetic fails
• COSY INFINITY Version 9.0 has been released
And, what we are doing further...

• High-order derivative based box rejection and the domain reduction
• Supporting high multiple precision computations for TMs


