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Background

• Given an ODE system: ẋ = f(x, θ) t ∈ [t0, tf ]

• Supplemented by boundary conditions: g(x(t0), x(tf ), θ) = 0

– Initial Value Problem (IVP)

– Two-Point Boundary Value Problem (TPBVP)

• A TPBVP may not have a solution or may have a finite number of solutions

• Often also need to determine parameter values for which solutions exist
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Background (Cont’d)

• Standard techniques for the numerical solutions of a TPBVP

– Shooting methods – based on solving related IVPs

– Finite difference or collocation methods

• Limitation – find a local solution and miss other solutions of interest

• Need a method that can guarantee to enclose all solutions of interest

4



Tools

• Interval Mathematics

• Taylor Models

• Constraint Propagation

• Validated Solution for Parametric ODEs
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Interval Mathematics

• A real interval X = [a, b] = {x ∈ R | a ≤ x ≤ b} is a segment in the real

number line

• An interval vector X = (X1, X2, · · · , Xn)T is an n-dimensional rectangle

• Basic interval arithmetic for X = [a, b] and Y = [c, d] is

X op Y = {x op y | x ∈ X, y ∈ Y }

• Interval elementary functions (e.g. exp(X), sin(X)) are also available

• The interval extension F (X) encloses all values of f(x) for every x ∈ X

F (X) ⊇ {f(x) | x ∈ X}

• Interval extensions computed using interval arithmetic may lead to

overestimation of function (”dependence” problem)
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Taylor Models

• Taylor Model Tf = (pf , Rf ): Bounds f(x) over X using a q-th order

Taylor polynomial pf and an interval remainder bound Rf

• Could obtain Tf using a truncated Taylor series

• Can also compute Taylor models by using Taylor model operations

• Beginning with Taylor models of simple functions, Taylor models of very

complicated functions can be computed

• Taylor models often yield sharper bounds for modest to complicated

functional dependencies
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Taylor Models – Range Bounding

• Exact range bounding of the interval polynomials – NP hard

• Direct evaluation of the interval polynomials – overestimation

• Focus on bounding the dominant part (1st and 2nd order terms)

• Schemes: LDB, QDB, QFB (Makino and Berz, 2004)

• A compromise approach – Exact bounding of 1st order and diagonal

elements of 2nd order terms

B(p) =

m∑

i=1

[
ai (Xi − xi0)

2
+ bi(Xi − xi0)

]
+ S

=

m∑
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[
ai

(
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2ai

)2

− b2
i

4ai

]
+ S,

where, S is the interval bound of other terms by direct evaluation
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Taylor Models – Constraint Propagation

• Consider constraint c(x) = 0 over X

• Goal – Eliminate parts of X in which constraint cannot be satisfied

• For each i = 1, 2 · · · , m, shrink X i using

B(Tc) = B(pc) + Rc = ai

(
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2ai

)2
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i

4ai

+ Si = 0

=⇒ U2
i = Wi, with Ui = Xi − xi0 +

bi

2ai

and Wi =

(
b2
i

4ai

− Si

)
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Validated Solution for Parametric ODEs

• Consider the IVP for the parametric ODEs

ẋ = f(x, θ), x(t0) = x0 ∈ X0, θ ∈ Θ

• Validated methods:

– Guarantee there exists a unique solution x in the interval [t0, tf ], for each

θ ∈ Θ and x0 ∈ X0

– Compute an interval Xj that encloses all solutions of the ODEs system at

tj for θ ∈ Θ and x0 ∈ X0

• Tools are available – AWA, VNODE, COSY VI, VSPODE, etc.
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New Method for Parametric ODEs

• Use interval Taylor series to represent dependence on time

• Use Taylor models to represent dependence on uncertain quantities

(parameters and initial states)

• Assuming Xj is known, then

– Phase 1: Compute a coarse enclosure X̃j and prove existence and

uniqueness using fixed pointed iteration with Picard operator and

high-order interval Taylor series

– Phase 2: Refine the coarse enclosure to obtain Xj+1 using Taylor

models in terms of the uncertain parameters and initial states

• Implemented in VSPODE (Validating Solver for Parametric ODEs, Lin and

Stadtherr, 2006)
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Phase 2 of VSPODE

• Represent uncertain initial states and parameters using Taylor model T x0

and T θ , with components

Txi0
= (m(Xi0) + (xi0 − m(Xi0)), [0, 0]), i = 1, · · · , m

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p

• Bound the interval Taylor series coefficients f [i] by Taylor models T f [i]

– Use mean value theorem

– Evaluate using Taylor model operations
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Phase 2 of VSPODE (Cont’d)

• Reduce ”wrapping effect” by using a new type of Taylor model

T xj
= T̂ xj

+ Pj , where Pj = {Ajvj | vj ∈ V j}

– The remainder bound is propagated as a parallelepiped (parallelepiped

method) or a rotated rectangle (QR-factorization method), instead of

intervals

• The result: a Taylor model T xj+1
in terms of the initial states x0 and

parameters θ

• Compute the enclosure Xj+1 = B(T xj+1
) by bounding over X0 and Θ
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VSPODE Example 1 – Double Pendulum Problem
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m1 = m2 = 1 kg

L1 = L2 = 1 m
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VSPODE Example 1 – Double Pendulum Problem

• ODE model is

θ̇1 = ω1

θ̇2 = ω2

ω̇1 =
−g(2m1 + m2) sin θ1 − m2g sin(θ1 − 2θ2) − 2m2 sin(θ1 − θ2) ω2

2L2 − ω2
1L1 cos(θ1 − θ2)

L1 [2m1 + m2 − m2 cos(2θ1 − 2θ2)]

ω̇2 =
2 sin(θ1 − θ2) ω2

1L1(m1 + m2) + g(m1 + m2) cos θ1 + ω2
2L2m2 cos(θ1 − θ2)

L2 [2m1 + m2 − m2 cos(2θ1 − 2θ2)]

• Local acceleration of gravity g ∈ [9.79, 9.81] m/s2

• This corresponds roughly to the variation in sea level g between 25◦ and 49◦

latitude (i.e. spanning the contiguous United States)

• Initial states: (θ1, θ2, ω1, ω2)0 = (0,−0.25π, 0, 0)

• Variable step size used in both VSPODE and VNODE
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VSPODE Example 1 – Double Pendulum Problem
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VSPODE Example 2 – Bioreactor Problem

• In a bioreactor, microbial growth may be described by

Ẋ = (µ − αD)X

Ṡ = D(Si − S) − kµX,

where X and S are concentrations of biomass and substrate, respectively.

• The growth rate µ may be given by

µ =
µmS

KS + S
(Monod Law)

or

µ =
µmS

KS + S + KIS2
(Haldane Law)
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VSPODE Example 2 – Bioreactor Problem

• Problem data

Value Units Value Units

α 0.5 - µm [1.19, 1.21] day−1

k 10.53 g S/ g X KS [7.09, 7.11] g S/l

D 0.36 day−1 KI [0.49, 0.51] (g S/l)−1

Si 5.7 g S/l X0 [0.82, 0.84] g X/l

S0 0.80 g S/l

• Integrate from t0 = 0 to tN = 20.

• Constant step size of h = 0.1 used in both VSPODE and VNODE.
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Bioreactor Problem – Monod Law
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Bioreactor Problem – Haldane Law
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Methodology for Solutions of TPBVP

• A type of shooting method based on branch and reduce framework

• Find variables z (unknown initial state and parameters)

• The initial interval vector of Z(0) is divided into a sequence of subintervals.

• Certain subintervals are dynamically refined while others are excluded from

consideration based on solution criteria (Boundary Conditions)
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Methodology for Solutions of TPBVP (Cont’d)

• Iteration: for a particular subinterval Z(k)

– Obtain the Taylor model of Xf using VSPODE

– Perform the CPP on boundary conditions (g = 0) to reduce Z(k)

∗ If Z(k) = ∅, go to next subinterval in the test list L
∗ If Width(Z) ≤ εx or |B(g)| ≤ εg , store Z(k) in the result list R and

go to next subinterval in the test list L
∗ If Z(k) is sufficiently reduced, repeat

∗ Otherwise, bisect Z(k) and store the resulting two subintervals in the

test list L

• Termination

– The test list L is empty

– All solutions of interest are stored in the result list R
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Methodology for Solutions of TPBVP (Cont’d)

• One of drawback of shooting methods is that the solution of IVP with some

variables may not exist in [t0, tf ], i.e. state becomes unbounded before

reaching tf

• VSPODE would FAIL in such a case

• May be associated with the abnormal value of state

• Introduce bounds on the state, i.e. natural bounds.

• Check state bounds on each integration step of VSPODE, and discard those

subintervals that will result in violation of the state bounds.
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Example 1 – Bratu’s Equation

• Arises in a model of spontaneous combustion: x′′ + λ exp(x) = 0

x′

1 = x2

x′

2 = − exp(x1)

t ∈ [0, 1]

x1(0) = 0

x1(1) = 0

x2(0) ∈ [0, 20]

• Two solutions in less than 2 seconds CPU time
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Example 1 – Bratu’s Equation (Cont’d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

x 1

x
2
(0) ∈ [ 0.5493527287752, 0.5493527287753 ]

x
2
(0) ∈ [ 10.846899019389, 10.846899019390 ]

25



Example 2 – Mathieu’s equation

• Arises arises in separation of variables of the Helmholtz differential equation

in elliptic cylindrical coordinates: x′′ + (λ − 2r cos 2t)x = 0

x′

1 = x2

x′

2 = −(λ − 10 cos(2x3))x1

x′

3 = 1

t ∈ [0, π]

x(0) = (1, 0, 0)T

x2(π) = 0

λ ∈ [0, 100]

• 9 solutions are found in 6.56 seconds of CPU time
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Example 2 – Mathieu’s equation (Cont’d)
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Example 3 – Steady State Brusselator with Diffusion

• Arises in an autocatalytic, oscillating chemical reaction

x′

1 = x2

x′

2 = L2/D1

[
(B + 1)x1 − A − x2

1x3

]

x′

3 = x4

x′

4 = L2/D2

(
x2

1x3 − Bx1

)

t ∈ [0, 1]

x1(0) = x1(1) = A

x3(0) = x3(1) = B/A

x2 ∈ [−25, 25], x4 ∈ [−25, 25]

x1 ≥ 0, x3 ≥ 0

• Constants: D1 = 0.0016, D2 = 0.008, A = 2, and B = 4.6
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Example 3 – Steady State Brusselator with Diffusion

• Depending on the value of L, there exists a differing number of solutions

L Solutions CPU (s)

0.1 2 2303

0.15 2 10545

0.2 6 9696

0.22 6 12683

0.25 6 30185

0.3 5 130603
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Concluding Remarks

• We propose a type of shooting method based on branch and reduce

framework to enclose all solutions of interest of TPBVP

– A new validated solver for parametric ODEs is used to produce

guaranteed bounds on the solutions of IVPs for ODEs with interval-valued

parameters and initial states

– A constraint propagation strategy on the Taylor models is used to

efficiently eliminate incompatible domain of variables

• Future work

– Computing Bifurcations

– Optimal control problems
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