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Overview

Goal of the talk: characterize the loss of precision in programs, due
to floating-point arithmetic, at compile time

@ A very brief introduction to static analysis by abstract
interpretation

o Implicitely relational domain for real-number value analysis by
abstract interpretation, relying on affine arithmetic

o Join and meet operations, order
o Relational domain for values and errors, main ideas

@ Example based on an extract from instrumentation software
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Static analysis

@ A program is considered as a dynamical system (discrete in
general)
@ We can be interested in two main types of properties:

o safety, through invariant true on all trajectories - for all inputs
or parameters. Application: give bounds for variables, prove
absence of RTEs etc.

@ liveness properties which become true at a certain time, on one
or all of the trajectories. Application: reachability of a state,
termination etc.

Similarity with certain concepts (and methods) of numerical
mathematics and control theory.

Theory and tools for automatic analysis of such properties, given a
program
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But automatic (or algorithmic) means...

...undecidability (ex. Turing halting problem). So we use
abstractions to find over-approximations of these sets of values
(sometimes under-approximations t00).
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void main() { [0]

int x=[-100,50]; [1]
while [2] (x<100) {
[3]

x=x+1; [4]

} 3]

}
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Resolution of semantic equations

o (Tarsky) (p(Z), <) (similarly, intervals) is a complete lattice
and the functional is monotonic = there is a least fixed point
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Resolution of semantic equations

o (Tarsky) (p(Z), <) (similarly, intervals) is a complete lattice
and the functional is monotonic = there is a least fixed point

@ We compute the Kleene iteration (f is actually
order-theoretically continuous here)

ho(f) = | | (L)

nelN
for the functional:
X0 T
x [—100, 50]
E X2 . x1 U xg

x3 | | ]—00,99] N xz
X4 x3 + [1,1]
X5 [100, +o0[Nx2
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Iteration 1

void main() { [0]
int x=[-100,50]; [1]
while [2] (x<100) { [3]

x=x+1; [4]
} [5]
}
Xg — T
xi = [-100,50]
X = x1UXy
x3 = |—00,99] Nx
Xqg = X3+ [1, 1]
xs = [100,+oo[Nxy

x& T

[—100, 50]

x3 = [-100,50]

x3 = ]—00,99] N[-100,50]

._.
|

= [-100,50]

xy = [-100,50] + [1,1]
= [-99,51]

x¢ = [100,+o00[N[-100,50]
= 1

(choatic iteration here/Gauss-Seidel like)
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[teration 50

void main() { [0]
int x=[-100,50]; [1]
x=x+1; [4] Moo _
5] x00 = [-100,50]
x39 = [-100,100]
} 30 = ][— oo,99]]m ([-100,100])
= [-100,99
x = T ’
% — [-100,50] 5% = [—100799} +[11]
’ = [-99,100
Xy = x3Ux
xi = ]1— 00499] N xo 50 = [1007+o‘i[ﬂ([_997100]
: = [100,100
X4 = X3+[1,1]
xs = [100,+oo[Nxz
Of course this is naive: acceleration of convergence, relational
domains etc.
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Context of the present work

@ Static analysis by abstract interpretation for inaccuracy errors
in floating-point computations (FLUCTUAT tool)

s Follows the floating-point control flow (given an evaluation
order!)

@ Guaranteed bounds on errors between real number
computation (what is expected) and the implementation in
floating-point numbers

s ldentify operations responsible for the accuracy losses

@ Applications

@ Safety-critical instrumentation software
o Towards numerically more intensive programs

@ Need for a very accurate real number value analysis
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Representation of values (concrete)

The set of floating-point values that a variable x can take is
expressed as:
X = r+e +ep,
= rx+@iela;(+ei)7(o
where:
@ rX is the real-number value that should have been computed if
we had exact arithmetic available

@ the o are coefficients expressing the propagation in x of the
initial first-order error introduced by the arithmetic operation
labelled i in the program

@ e, is the higher-order error
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x = 0.1+1.49011612¢~° [1]

~ _ y = 05
float x = 0.1; // [1] z = 0.6+149011612¢° [1]+
float y = 05, // [2] 2235174186_8 [3]
float z = x+y; // [3] t — 0.06+1.04308132¢9 [1]
float t = x*y; // [4]

+2.23517422¢7° [3]
—8.94069707e 10 [4]
—3.55271366e 17 [ho]
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Abstraction

@ First natural idea: use interval arithmetic for coefficients r,
o and ef,
@ Rounding errors (o) given by the IEEE 754 standard:
s in general, an interval of width ulp(x) when x is not just a
singleton
@ But of course, we run into dependency problems, wrapping
effect
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Each variable of a program has values given as a function (at some
control point)
X] X X: X
g(r, ... rk et ... e™)

where r*i and e are respectively the enclosure of the real number
values, and of the inaccuracy error, of variables x;
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Each variable of a program has values given as a function (at some
control point)
X] X X: X
g(r, ... rk et ... e™)

where r*i and e are respectively the enclosure of the real number
values, and of the inaccuracy error, of variables x;

@ non-continuity of g in general (if statements) - “unstable”
tests

@ g can be > 100KLoC, with > 10K variables
@ g is constructed on the fly (part of the analysis is actually to
find g!)
@ interprocedural calls, depending on context
o aliases between variables, to be discovered

@ we are looking for invariant sets of g in a large space of values,
if possible, or else the result of an iteration of g over a long
period of time

@ hence computations in an algebra with union and intersection
operations as well
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Not only do we have uncertain rounding errors but...

...there are in fact two kinds of uncertainties to propagate:

@ Uncertainties on the initial values of the variables (which
represent inputs to the program) or uncertainties on the
parameters of the program (the implemented model)

& a priori large intervals [given through user-defined assertions]

@ Rounding errors, deterministic but only known in general as
belonging to some interval

@ a priori much smaller intervals
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Abstraction of the real number computation

Recall that:
X = r+e +ep,

R X X X
= "+ @i af +ep,

@ We use some form of affine arithmetic for r* (and for the
errors too as we shall see)

@ We can refine further the floating-point enclosure, using error
on bounds
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Technicality on the floating-point bounds

@ To compute the floating-point enclosure, we take advantage of
the fact that bounds are floating-point numbers
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Technicality on the floating-point bounds

@ To compute the floating-point enclosure, we take advantage of
the fact that bounds are floating-point numbers

o Consider:
x=[0,1]*[0,1];

@ Error is in [—“1};(1),“1%(1)] for any value of x (this is accounted

for by terms e and ej,)
o But the error is null on x=0 and x=1
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Technicality on the floating-point bounds

@ To compute the floating-point enclosure, we take advantage of
the fact that bounds are floating-point numbers

o Consider:
x=[0,1]*[0,1];

ulp 1) ulp(l)

@ Erroris in [- ] for any value of x (this is accounted
for by terms e1 and )
o But the error is null on x=0 and x=1

@ Hence we maintain a correction on bounds (6, 6% ) which
controls a potential drift of the bounds

@ we compute r*, then the real number enclosure of r* + e} + ¢},
@ then we round these bounds and deduce (6%, %) and the new
first-order error

@ The enclosure is then of the form is [inf r* + 6, sup r* 4 6%]
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Affine Arithmetic for real number computation (r¥)

Proposed in 93 by Comba, De Figueiredo and Stolfi as a more
accurate extension of Interval Arithmetic

@ Assignment of a of a variable x whose value is given in a range
[a, b] at label i, introduces a noise symbol ¢; :

(a+b) (b—a)
5 + 3 Ej.

@ Addition of affine forms is computed componentwise:

X =

£+y=(ag+ag)+(f+)er+ ...+ (af+af)en

@ Multiplication : we select an approximate linear form, the
approximation error creates a new noise term :
n n
K%y =agag + ) (afaf +alag)ei+ (Y laf LY o e
i=1 i=1 i=1

(can be improved, in particular with SDP)
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Interval affine arithmetic

@ The analyzer represents the real coefficients o by small
intervals with MPFR bounds

@ When the width of such intervals gets larger, we use new noise
symbols

@ Extended abstract domain Al % = ag + aje1 + ... + ajep
with af € IR and of € IR (i > 0)
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Join (and meet) operations on affine forms

@ A natural join between r* and rY is
P =afuad+> (afuad)e (1)
iel

Result might be greater than the union of enclosing intervals
(partly corrected by the (6%, 67%)).

@ But with interval coefficients #X — XU £ 0l
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Join (and meet) operations on affine forms

For an interval i, we note

mid(i) = % dev(i) = 7 — mid(i)
the center and deviation of the interval.

@ A better join is

PO = mid([og, o3]) + Y _ mid([of, o)) i + > _ dev([af, o)]) e}
icl i>0
(2)

@ Then we have affine forms with real coefficients again

@ Order on affine forms considers noise symbols due to join operations
differently than noise symbols due to arithmetic operations
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Example (join)

Let X =1+4+2e; +epand /¥ =2 —¢;.

@ Join on intervals r* U r¥ € [-2,4]
@ First join on affine forms

Y =[1,2] + [-1,2]e1 + [0,1]ea C [-2,5]

(larger enclosure than on intervals but still interesting for
further computations to keep relations, over-approximation
compensated by (6%,0%))

@ Second join on affine forms

PXY = 1.5+ 0.5¢1 + 0.5e5 + 2.5¢§ C [-2,5]

Same enclosure in this case, but above all XY — XYY =0

(Ongoing work on good join and meet operators, order on affine
forms, widening and fixpoint computations)
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First-order errors

Also represented in affine arithmetic (with other noise symbols):
X
ef = Dier, i m

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /
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First-order errors
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First-order errors
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X
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@ t'}'m;: “uncertain” first-order error terms associated to the
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@ t): “exact” first-order error terms associated to the operation /

@ the other terms are useful for modelling the propagation of the
first-order error terms after non-linear operations
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First-order errors

Also represented in affine arithmetic (with other noise symbols):

//X

&f = @i, T +Dier, tF +Dici t

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /
@ t): “exact” first-order error terms associated to the operation /
@ the other terms are useful for modelling the propagation of the
first-order error terms after non-linear operations
o For instance, the term t"7”” &; comes from the multiplication

of tf by o¢j, and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i
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First-order errors

Also represented in affine arithmetic (with other noise symbols):
e = @/GLz t' i+ ®I€L1 tf + ®iel t"7 e +55 + GapGP ﬁ; Up

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /

@ t): “exact” first-order error terms associated to the operation /

@ the other terms are useful for modelling the propagation of the

first-order error terms after non-linear operations

o For instance, the term t"7”” &; comes from the multiplication

of tf by o¢j, and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i

@ The multiplications ¢;7; cannot be represented in our linear
forms: we use a new noise symbol ¥,
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First-order errors

Also represented in affine arithmetic (with other noise symbols):
e = @/GLz t' i+ ®I€L1 tf + ®iel t"7 e +55 + GapGP ﬁ; Up

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /

@ t): “exact” first-order error terms associated to the operation /

@ the other terms are useful for modelling the propagation of the

first-order error terms after non-linear operations

o For instance, the term t"7”” &; comes from the multiplication

of tf by o¢j, and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i

@ The multiplications ¢;7; cannot be represented in our linear
forms: we use a new noise symbol ¥,

(Notice: values [large intervals] are considered to be of order 0)
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Higher-order error terms

@ The multiplication of errors introduce higher-order error terms,
which are modelled in the following manner:

ei)r(o = (t;; + @ t/)l:,l n+ @ t//)I;,i g+ @ ﬁﬁ,p 19P)

I€Ly icl peP
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Newton method (non-linear) for the “inverse”

double xi, xsi, A, temp;
signed int *PtrA, *Ptrxi, cond, exp, 1i;
A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);
/* inverse power of 2 closest to A */
PtrA = (signed int *) (&A);
Ptrxi = (signed int *) (&xi);
exp = (signed int) ((PtrA[0] & Ox7FF00000) >> 20) - 1023;
xi = 1; Ptrxi[0] = ((1023-exp) << 20);
cond = 1; i = 0;
while (abs(temp)>e-8) {

xs8i = 2*%xi-Axxi*xi;

temp = xsi-xi;

Xxi = x8i;
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Computation of the inverse

@ Symbolic execution:
o Input =20.0: i =5, xi = 5.000000e-2 +
[-2.81893e-18,-2.76471e-18]
o Output = 30.0: i =9, xi = 3.333333e-2 +
[-5.28429e-18,6.21309e-18]
@ With intervals
o does not converge, even when subdividing

@ With the relational model, finds i € [5, 9] for input A € [20, 30]
(with subdivisions)
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A closest look at results (relational)

Input plus initial error [20,20.001] + [-1e-05,1e-05]:
@ (0.03 sec, 4.1M) :

@ xi in [4.999750e-2,5.000000e-2] + [-2.68644e-08,2.68644e-08]

o temp=xsi-xi in [-5.06890974e-9,5.06891107e-9] +
[-1.89053e-09,1.89053e-09] (the precise estimate of the error
allows for a precise computation of the floating-point value)

For larger value domains: subdivision.
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Example : second-order filter

A new independent input E at each iteration of the filter:

double S,S0,S1,E,EQ,E1;

int i;

$=0.0; S0=0.0;
E=__BUILTIN_DAED_DBETWEEN(0,1.0);
EO=__BUILTIN_DAED_DBETWEEN(0,1.0);

for (i=1;i<=170;i++) {

El1 = EO;

EO = E;

E = __BUILTIN_DAED_DBETWEEN(0,1.0);

S1 = S0;

S0 = S;

S=0.7*%E-E0* 1.3 +E1 *1.1+50*1.4-2S1% 0.7 ;
}
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Second-order filter

@ Relational analysis on values and errors

@ with the default precision of the analysis (60 bits) :

S in [-4.626,4.€26], error [-5.e+11,5.e+11] in 5.1 sec, 25M
o with 200 bits:

S in [-1.09,2.76], error [-1.1e-14,1.1e-14] in 5.2 sec, 27TM
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Second-order filter

@ Relational analysis on values and errors

@ with the default precision of the analysis (60 bits) :

S in [-4.626,4.€26], error [-5.e+11,5.e+11] in 5.1 sec, 25M
o with 200 bits:

S in [-1.09,2.76], error [-1.1e-14,1.1e-14] in 5.2 sec, 27TM

(Notice the importance of using MPFR for representing the
coefficients in the relational model)
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Second-order filter

Values and errors stabilized with MPFRbits=200
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4 .
A ste1f”
I 7
solis

it Hfeets
056

15

.

0 16 &0 50 40- 56 60 0 B 50: 00 1D HOl 156 40140 160 {70 10 20 %0 40 50 60 70 80 S0 100 110 120 130 140 150 160 170

g Yosets
\ \
2 I\Ve fe15
M7 eets
123 CESES
28 et

Values in [-1.09,2.76] Error in [-1.1e-14,1.1e-14]
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Second-order filter

Propagation of an error on the input:

@ Each input has now an error in [0,0.001]

@ Relational on errors : S in [-1.09,2.76], with a stabilized error
in [-0.00109,0.00276]
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Current research

@ For embedded systems:

@ the integrators (and everything built on that, i.e. PID
controllers): probabilistic methods, CVFs?

o More generally, analysis of hybrid systems, i.e. systems
combining the discrete semantics of the program with a system
of PDEs/ODEs for the continuous physical environment (see
0. Bouissou's talk) - see ERTS'06, SCAN'06

@ Analysis of code/specification in MatLab/Simulink [fragment]

@ Scientific codes: analysis of the methods to solve the linear
equations (i.e. conjugate gradient etc.) used for instance when
solving PDEs by a finite element method

o General improvements:

@ Computation of under-approximations as well — show the
quality of the results

o Improvement of the resolution of the semantic equations by
policy iteration; faster and better precision, incremental
analysis etc. See CAV'05, ESOP'07
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