Static Analysis of Numerical Algorithms

Eric Goubault and Sylvie Putot

CEA Saclay
MeASI
{Eric.Goubault, Sylvie.Putot}@cea.fr

Taylor Methods Workshop, Boca-Raton, 12/2006

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Overview

Goal of the talk: characterize the loss of precision in programs, due
to floating-point arithmetic, at compile time

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Overview

Goal of the talk: characterize the loss of precision in programs, due
to floating-point arithmetic, at compile time

@ A very brief introduction to static analysis by abstract
interpretation

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Overview

Goal of the talk: characterize the loss of precision in programs, due
to floating-point arithmetic, at compile time

@ A very brief introduction to static analysis by abstract
interpretation

o Implicitely relational domain for real-number value analysis by
abstract interpretation, relying on affine arithmetic
o Join and meet operations, order

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Overview

Goal of the talk: characterize the loss of precision in programs, due
to floating-point arithmetic, at compile time

@ A very brief introduction to static analysis by abstract
interpretation

o Implicitely relational domain for real-number value analysis by
abstract interpretation, relying on affine arithmetic

o Join and meet operations, order

@ Relational domain for values and errors, main ideas

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Overview

Goal of the talk: characterize the loss of precision in programs, due
to floating-point arithmetic, at compile time

@ A very brief introduction to static analysis by abstract
interpretation

o Implicitely relational domain for real-number value analysis by
abstract interpretation, relying on affine arithmetic

o Join and meet operations, order
o Relational domain for values and errors, main ideas

@ Example based on an extract from instrumentation software

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Static analysis

@ A program is considered as a dynamical system (discrete in
general)
@ We can be interested in two main types of properties:

o safety, through invariant true on all trajectories - for all inputs
or parameters. Application: give bounds for variables, prove
absence of RTEs etc.

@ liveness properties which become true at a certain time, on one
or all of the trajectories. Application: reachability of a state,
termination etc.

Similarity with certain concepts (and methods) of numerical
mathematics and control theory.

Theory and tools for automatic analysis of such properties, given a
program

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

But automatic (or algorithmic) means...

...undecidability (ex. Turing halting problem). So we use
abstractions to find over-approximations of these sets of values
(sometimes under-approximations t00).

vary

B e P e

varx
intervalles Octogones Polyedres varx

— abstract interpretation

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

void main() { [0]

int x=[-100,50]; [1]
while [2] (x<100) {
[3]

x=x+1; [4]

} 3]

}

Xo
X1
X2
X3
Xq
X5

T
[-100, 50]

x1 U xy

] — OO,99] M xo
X3 + [1, 1]
[100, +OO[ﬂX2

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Resolution of semantic equations

o (Tarsky) (p(Z), <) (similarly, intervals) is a complete lattice
and the functional is monotonic = there is a least fixed point

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Resolution of semantic equations

o (Tarsky) (p(Z), <) (similarly, intervals) is a complete lattice
and the functional is monotonic = there is a least fixed point

@ We compute the Kleene iteration (f is actually
order-theoretically continuous here)

ho(f) = | | (L)

nelN
for the functional:
X0 T
x [—100, 50]
E X2 . x1 U xg

x3 | |]—00,99] N xz
X4 x3 + [1,1]
X5 [100, +o0[Nx2

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Iteration 1

void main() { [0]
int x=[-100,50]; [1]
while [2] (x<100) { [3]

x=x+1; [4]
} [5]
}
Xg — T
xi = [-100,50]
X = x1UXy
x3 = |—00,99] Nx
Xqg = X3+ [1, 1]
xs = [100,+oo[Nxy

x& T

[—100, 50]

x3 = [-100,50]

x3 =]—00,99] N[-100,50]

._.
|

= [-100,50]

xy = [-100,50] + [1,1]
= [-99,51]

x¢ = [100,+o00[N[-100,50]
= 1

(choatic iteration here/Gauss-Seidel like)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

[teration 50

void main() { [0]
int x=[-100,50]; [1]
x=x+1; [4] Moo _
5] x00 = [-100,50]
x39 = [-100,100]
} 30 =][— oo,99]]m ([-100,100])
= [-100,99
x = T ’
% — [-100,50] 5% = [—100799} +[11]
’ = [-99,100
Xy = x3Ux
xi =]1— 00499] N xo 50 = [1007+o‘i[ﬂ([_997100]
: = [100,100
X4 = X3+[1,1]
xs = [100,+oo[Nxz
Of course this is naive: acceleration of convergence, relational
domains etc.

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Context of the present work

@ Static analysis by abstract interpretation for inaccuracy errors
in floating-point computations (FLUCTUAT tool)

s Follows the floating-point control flow (given an evaluation
order!)

@ Guaranteed bounds on errors between real number
computation (what is expected) and the implementation in
floating-point numbers

s ldentify operations responsible for the accuracy losses

@ Applications

@ Safety-critical instrumentation software
o Towards numerically more intensive programs

@ Need for a very accurate real number value analysis

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Representation of values (concrete)

The set of floating-point values that a variable x can take is
expressed as:
X = r+e +ep,
= rx+@iela;(+ei)7(o
where:
@ rX is the real-number value that should have been computed if
we had exact arithmetic available

@ the o are coefficients expressing the propagation in x of the
initial first-order error introduced by the arithmetic operation
labelled i in the program

@ e, is the higher-order error

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

x = 0.1+1.49011612¢~° [1]

~ _ y = 05
float x = 0.1; // [1] z = 0.6+149011612¢° [1]+
float y = 05, // [2] 2235174186_8 [3]
float z = x+y; // [3] t — 0.06+1.04308132¢9 [1]
float t = x*y; // [4]

+2.23517422¢7° [3]
—8.94069707e 10 [4]
—3.55271366e 17 [ho]

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Abstraction

@ First natural idea: use interval arithmetic for coefficients r,
o and ef,
@ Rounding errors (o) given by the IEEE 754 standard:
s in general, an interval of width ulp(x) when x is not just a
singleton
@ But of course, we run into dependency problems, wrapping
effect

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Each variable of a program has values given as a function (at some
control point)
X] X X: X
g(r, ... rk et ... e™)

where r*i and e are respectively the enclosure of the real number
values, and of the inaccuracy error, of variables x;

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Each variable of a program has values given as a function (at some
control point)
X] X X: X
g(r, ... rk et ... e™)

where r*i and e are respectively the enclosure of the real number
values, and of the inaccuracy error, of variables x;

@ non-continuity of g in general (if statements) - “unstable”
tests

@ g can be > 100KLoC, with > 10K variables
@ g is constructed on the fly (part of the analysis is actually to
find g!)
@ interprocedural calls, depending on context
o aliases between variables, to be discovered

@ we are looking for invariant sets of g in a large space of values,
if possible, or else the result of an iteration of g over a long
period of time

@ hence computations in an algebra with union and intersection
operations as well

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Not only do we have uncertain rounding errors but...

...there are in fact two kinds of uncertainties to propagate:

@ Uncertainties on the initial values of the variables (which
represent inputs to the program) or uncertainties on the
parameters of the program (the implemented model)

& a priori large intervals [given through user-defined assertions]

@ Rounding errors, deterministic but only known in general as
belonging to some interval

@ a priori much smaller intervals

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Abstraction of the real number computation

Recall that:
X = r+e +ep,

R X X X
= "+ @i af +ep,

@ We use some form of affine arithmetic for r* (and for the
errors too as we shall see)

@ We can refine further the floating-point enclosure, using error
on bounds

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Technicality on the floating-point bounds

@ To compute the floating-point enclosure, we take advantage of
the fact that bounds are floating-point numbers

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Technicality on the floating-point bounds

@ To compute the floating-point enclosure, we take advantage of
the fact that bounds are floating-point numbers

o Consider:
x=[0,1]*[0,1];

@ Error is in [—“1};(1),“1%(1)] for any value of x (this is accounted

for by terms e and ej,)
o But the error is null on x=0 and x=1

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Technicality on the floating-point bounds

@ To compute the floating-point enclosure, we take advantage of
the fact that bounds are floating-point numbers

o Consider:
x=[0,1]*[0,1];

ulp 1) ulp(l)

@ Erroris in [-] for any value of x (this is accounted
for by terms e1 and)
o But the error is null on x=0 and x=1

@ Hence we maintain a correction on bounds (6, 6%) which
controls a potential drift of the bounds

@ we compute r*, then the real number enclosure of r* + e} + ¢},
@ then we round these bounds and deduce (6%, %) and the new
first-order error

@ The enclosure is then of the form is [inf r* + 6, sup r* 4 6%]

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Affine Arithmetic for real number computation (r¥)

Proposed in 93 by Comba, De Figueiredo and Stolfi as a more
accurate extension of Interval Arithmetic

@ Assignment of a of a variable x whose value is given in a range
[a, b] at label i, introduces a noise symbol ¢; :

(a+b) (b—a)
5 + 3 Ej.

@ Addition of affine forms is computed componentwise:

X =

£+y=(ag+ag)+(f+)er+ ...+ (af+af)en

@ Multiplication : we select an approximate linear form, the
approximation error creates a new noise term :
n n
K%y =agag +) (afaf +alag)ei+ (Y laf LY o e
i=1 i=1 i=1

(can be improved, in particular with SDP)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Interval affine arithmetic

@ The analyzer represents the real coefficients o by small
intervals with MPFR bounds

@ When the width of such intervals gets larger, we use new noise
symbols

@ Extended abstract domain Al % = ag + aje1 + ... + ajep
with af € IR and of € IR (i > 0)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Join (and meet) operations on affine forms

@ A natural join between r* and rY is
P =afuad+> (afuad)e (1)
iel

Result might be greater than the union of enclosing intervals
(partly corrected by the (6%, 67%)).

@ But with interval coefficients #X — XU £ 0l

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Join (and meet) operations on affine forms

For an interval i, we note

mid(i) = % dev(i) = 7 — mid(i)
the center and deviation of the interval.

@ A better join is

PO = mid([og, o3]) + Y _ mid([of, o)) i + > _ dev([af, o)]) e}
icl i>0
(2)

@ Then we have affine forms with real coefficients again

@ Order on affine forms considers noise symbols due to join operations
differently than noise symbols due to arithmetic operations

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Example (join)

Let X =1+4+2e; +epand /¥ =2 —¢;.

@ Join on intervals r* U r¥ € [-2,4]
@ First join on affine forms

Y =[1,2] + [-1,2]e1 + [0,1]ea C [-2,5]

(larger enclosure than on intervals but still interesting for
further computations to keep relations, over-approximation
compensated by (6%,0%))

@ Second join on affine forms

PXY = 1.5+ 0.5¢1 + 0.5e5 + 2.5¢§ C [-2,5]

Same enclosure in this case, but above all XY — XYY =0

(Ongoing work on good join and meet operators, order on affine
forms, widening and fixpoint computations)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

First-order errors

Also represented in affine arithmetic (with other noise symbols):
X
ef = Dier, i m

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

First-order errors

Also represented in affine arithmetic (with other noise symbols):
X
ef = Dier, t'1 1+ Dier,

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /

@ t): “exact” first-order error terms associated to the operation /

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

First-order errors

Also represented in affine arithmetic (with other noise symbols):
X
ef = Dier, t'1 1+ Dier,

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /
@ t): “exact” first-order error terms associated to the operation /

@ the other terms are useful for modelling the propagation of the
first-order error terms after non-linear operations

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

First-order errors

Also represented in affine arithmetic (with other noise symbols):

//X

&f = @i, T +Dier, tF +Dici t

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /
@ t): “exact” first-order error terms associated to the operation /
@ the other terms are useful for modelling the propagation of the
first-order error terms after non-linear operations
o For instance, the term t"7”” &; comes from the multiplication

of tf by o¢j, and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

First-order errors

Also represented in affine arithmetic (with other noise symbols):
e = @/GLz t' i+ ®I€L1 tf + ®iel t"7 e +55 + GapGP ﬁ; Up

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /

@ t): “exact” first-order error terms associated to the operation /

@ the other terms are useful for modelling the propagation of the

first-order error terms after non-linear operations

o For instance, the term t"7”” &; comes from the multiplication

of tf by o¢j, and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i

@ The multiplications ¢;7; cannot be represented in our linear
forms: we use a new noise symbol ¥,

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

First-order errors

Also represented in affine arithmetic (with other noise symbols):
e = @/GLz t' i+ ®I€L1 tf + ®iel t"7 e +55 + GapGP ﬁ; Up

@ t'}'m;: “uncertain” first-order error terms associated to the
operation /

@ t): “exact” first-order error terms associated to the operation /

@ the other terms are useful for modelling the propagation of the

first-order error terms after non-linear operations

o For instance, the term t"7”” &; comes from the multiplication

of tf by o¢j, and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i

@ The multiplications ¢;7; cannot be represented in our linear
forms: we use a new noise symbol ¥,

(Notice: values [large intervals] are considered to be of order 0)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Higher-order error terms

@ The multiplication of errors introduce higher-order error terms,
which are modelled in the following manner:

ei)r(o = (t;; + @ t/)l:,l n+ @ t//)I;,i g+ @ ﬁﬁ,p 19P)

I€Ly icl peP

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Newton method (non-linear) for the “inverse”

double xi, xsi, A, temp;
signed int *PtrA, *Ptrxi, cond, exp, 1i;
A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);
/* inverse power of 2 closest to A */
PtrA = (signed int *) (&A);
Ptrxi = (signed int *) (&xi);
exp = (signed int) ((PtrA[0] & Ox7FF00000) >> 20) - 1023;
xi = 1; Ptrxi[0] = ((1023-exp) << 20);
cond = 1; i = 0;
while (abs(temp)>e-8) {

xs8i = 2*%xi-Axxi*xi;

temp = xsi-xi;

Xxi = x8i;

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Computation of the inverse

@ Symbolic execution:
o Input =20.0: i =5, xi = 5.000000e-2 +
[-2.81893e-18,-2.76471e-18]
o Output = 30.0: i =9, xi = 3.333333e-2 +
[-5.28429e-18,6.21309e-18]
@ With intervals
o does not converge, even when subdividing

@ With the relational model, finds i € [5, 9] for input A € [20, 30]
(with subdivisions)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

A closest look at results (relational)

Input plus initial error [20,20.001] + [-1e-05,1e-05]:
@ (0.03 sec, 4.1M) :

@ xi in [4.999750e-2,5.000000e-2] + [-2.68644e-08,2.68644e-08]

o temp=xsi-xi in [-5.06890974e-9,5.06891107e-9] +
[-1.89053e-09,1.89053e-09] (the precise estimate of the error
allows for a precise computation of the floating-point value)

For larger value domains: subdivision.

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Example : second-order filter

A new independent input E at each iteration of the filter:

double S,S0,S1,E,EQ,E1;

int i;

$=0.0; S0=0.0;
E=__BUILTIN_DAED_DBETWEEN(0,1.0);
EO=__BUILTIN_DAED_DBETWEEN(0,1.0);

for (i=1;i<=170;i++) {

El1 = EO;

EO = E;

E = __BUILTIN_DAED_DBETWEEN(0,1.0);

S1 = S0;

S0 = S;

S=0.7*%E-E0* 1.3 +E1 *1.1+50*1.4-2S1% 0.7 ;
}

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Second-order filter

@ Relational analysis on values and errors

@ with the default precision of the analysis (60 bits) :

S in [-4.626,4.€26], error [-5.e+11,5.e+11] in 5.1 sec, 25M
o with 200 bits:

S in [-1.09,2.76], error [-1.1e-14,1.1e-14] in 5.2 sec, 27TM

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Second-order filter

@ Relational analysis on values and errors

@ with the default precision of the analysis (60 bits) :

S in [-4.626,4.€26], error [-5.e+11,5.e+11] in 5.1 sec, 25M
o with 200 bits:

S in [-1.09,2.76], error [-1.1e-14,1.1e-14] in 5.2 sec, 27TM

(Notice the importance of using MPFR for representing the
coefficients in the relational model)

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Second-order filter

Values and errors stabilized with MPFRbits=200

os
4 .
A ste1f”
I 7
solis

it Hfeets
056

15

.

0 16 &0 50 40- 56 60 0 B 50: 00 1D HOl 156 40140 160 {70 10 20 %0 40 50 60 70 80 S0 100 110 120 130 140 150 160 170

g Yosets
\ \
2 I\Ve fe15
M7 eets
123 CESES
28 et

Values in [-1.09,2.76] Error in [-1.1e-14,1.1e-14]

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Second-order filter

Propagation of an error on the input:

@ Each input has now an error in [0,0.001]

@ Relational on errors : S in [-1.09,2.76], with a stabilized error
in [-0.00109,0.00276]

0.0028

0022
0.0017
0.0011

0.00056

0 10 20 30 40 50 60 70 80 20 100 110 120 130 140 150 160 170

00056
0,

-0.007

-0.0023

-0.0028

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

Current research

@ For embedded systems:

@ the integrators (and everything built on that, i.e. PID
controllers): probabilistic methods, CVFs?

o More generally, analysis of hybrid systems, i.e. systems
combining the discrete semantics of the program with a system
of PDEs/ODEs for the continuous physical environment (see
0. Bouissou's talk) - see ERTS'06, SCAN'06

@ Analysis of code/specification in MatLab/Simulink [fragment]

@ Scientific codes: analysis of the methods to solve the linear
equations (i.e. conjugate gradient etc.) used for instance when
solving PDEs by a finite element method

o General improvements:

@ Computation of under-approximations as well — show the
quality of the results

o Improvement of the resolution of the semantic equations by
policy iteration; faster and better precision, incremental
analysis etc. See CAV'05, ESOP'07

Eric Goubault and Sylvie Putot Static Analysis of Numerical Algorithms

