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Motivation

® Space trajectory design 1s always affected by
uncertainties

® Uncertainties due to navigation systems (errors on
the knowledge of the vehicle position and velocity)

Uncertainties in modeling both the environment
and the system performances (e.g.

atmosphere density and vehicle acrodynamic
parameters)
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® The design of a space mission must take into account
the expected uncertainties values: robust design




Outline

® Robust guidance algorithm using Differential
Algebra (DA)

e Aecrocapture maneuver
® DA solution of robust optimal control problem
® [ow-thrust transfer to Mars

e Verified optimal control via Taylor Model (TM)
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® [unar landing




Robust Guidance

® The trajectory is computed in nominal conditions
typically by solving an optimization problem
® The trajectory is characterized by

® A nominal vector of parameters p = {x; pi, p2, ... pn}
which includes also the 1nitial state x;

A nominal control history u = g(uo, ui, ... un, 1)
defined for example by a cubic spline interpolation

® A nominal final state xy
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® The goal of robust guidance algorithm 1s to find the

corrections in the control law u to reach the final
position xsregardless of the uncertainties on p




Robust Guidance: DA algorithm
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Simple /D problem:

Initialize the uncertain parameter [p] = p° + Ap and
the control change [u] = u” 4+ Awu as DA variables

By means of DA numerical integration obtain the
n-th order map Az = M(Au, Ap)

Add the identity map Ap = Z(Ap)and invert the
complete map to gain Au = M~ (Azy, Ap)

By forcing Azy =0 find Au = Au(Ap)




Aerocapture Maneuver

® Acrocapture 1s a way to reduce the propellant
needed to gain the final planetary trajectory
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Aerocapture Maneuver
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Aerocapture Maneuver

Uncertainties considered:

Cp £ 20 %, Qo £ 20%, Yo+ 0.8 deg
Due to the high instability of the
dynamics, a composition of
several maps 1s required to
manage Yo uncertainty

1 to 4 control points to match 1 to
4 final state components

7" order Taylor expansions

COEFFICIENT ORDER EXPONENTS
7.640628215424944E-02
0.3760917116838308E-02
0.2420044808209212E-03
0.20124920983960635E-04
0.1944954823730704E-05
0.1750467514565079E-06
.1841260173271442E-05

=&
>
S
=
Eb
V
SRS
8"3
. ~
S S
E;
S
S8
S

Noulhdh wWwN R H




Robust Optimal Control of Trajectories

—

Transfer between two fixed states

® Suppose we have a nominal solution of the optimal control
problem:
r= flx,u,t) Find a solution that minimizes:
a:(tz) = I; L 1 :
= — J = —u dr
x(ty) = @y - /t 2
where @ = {5131,:62, ,ajn}
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Obtained by means of a control parameterization:

=&
>
S
S
Eb
V
SRS
8‘0
. ~
S S
S
AL
S

U = g(u17u27 '°°7um7t), m>n

Suppose the presence of uncertainty on the initial state

Find the new control function which solves the previous
problem (i.e. reach & and minimize./ )

9



Robust Optimal Control of Trajectories

Algorithm:

® Initialize &; and the control parameters as DA variables:

@] = ' + Az and [up] = u) + Aupfork=1,....m
® A Runge-Kutta DA integration of the ODE leads to:

Azxy = Mg, (Ax;, Au) and Au = {Aug, ..., Au,, }

— - Expansion of & s w.r.t. &; and the control parameters
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® Seclect a subset of control parameters equal to the number

of constraints on the final state (n), Au,, and indicate the
remaining ones (m-n) with Au,,




Robust Optimal Control of Trajectories
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® Expand the constraint manifold

® Build the following map and invert it:

Az [Mmf] Ax; Ax; [wa} )
Au, | = [Zua | Aug | Aug | = | [Zu,]
A:cz- [Za:z] A’U/O - (Auo) ( [Iwz]

® By imposing Az¢ = ( obtain the Taylor Series expansion of the
constraint manifold:

Au, = M, (Au,, Ax;)
® Substitute 1n the objective function and gain:

J = j(Aua,AUO,AiBi) = j: j(AuaaAwi)

e Evaluate the gradient with respect to A, :
Vu,J =V TJ(Au,, Ax;)



Robust Optimal Control of Trajectories

® Build the following map and invert it:
vuaj . [vua j] A'U'a A’U,a i _] = Vuaj

e Given an uncertainty on the initial state Ax;, the previous

map delivers, by imposing V,_J = 0, the control correction
A, solution of the optimal control problem
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® The corrections to be applied on the omitted variables, A u,,,

are given by the previous explicit expression of the
constraint manifold




[Low-Thrust Transfter to Mars

® The control profile 1s described by a cubic spline
defined on 4 time-equally-spaced collocation points

e Nominal optimal solution

® Departing time
to=1213.8 MJD

® Transfer time
tioy = 513.210 days
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e Uncertainty considered

e [.aunch window
to =[1208, 1219] MJD

13



[Low-Thrust Transfter to Mars

DA techniques are used to evaluate the analytical ephemerides
with departing date uncertainty

As aresult the ephemeris model delivers Taylor expansions of
the Earth position and velocity (initial state)

The time of flight is chosen to keep the arrival date fixed
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TM Validated Control

The DA control law can be validated using TM
Consider the generic ODE:

z = fla, u,t)
iL‘(tz) = &L;

The Taylor series are transformed into a Taylor
model by composition with a Taylor model 1dentity

e.gif Au= Au(Ax;) . _ Au = AuoI;M
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The dynamics 1s then propagated using the TM
control and validated Taylor integrator
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Lunar Landing - 2BP

Example 1:

Nominal initial conditions: pericenter of an elliptic orbit (20
km of altitude)

The goal 1s to land at Moon South Pole

The nominal optimal control is computed in a two-body
dynamical model

Firstly DA 1s used to find the control strategy that reacts to
the uncertainties in two-body problem (2BP)

Introduced uncertainty:
30 m on 1nitial position
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Lunar Landing - 2BP

Example 2:

® Introduced uncertainty:

® 10 m on initial position
® 10 m/s on initial velocity

position error [km]

® (ontrol corrections of the
order of 10°N

0 1 1 1 1 1
0 3 10 135 20 25 30
titne [min]

e Secondly Taylor models are introduced and the validated Taylor
integration 1s used to address the validated control problem:

Variable Desired Interval Enclosure Width

X [m] -0.5512| [-0.5534 , -0.5491 ] 0.0043
Y [m] 1.6180| [ 1.6137 , 1.6220 ] 0.0083
Z [m] 0.0000| [-0.3648E-003, ©@.3643E-003]| 7.2960E-04
Vx [m/s] -0.6553E-003| [-0.6575E- @03, -0.6531E-0037]| 4.4000E-06
[-3.
[-0.
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Vy [m/s] -3.0006511 0006590 , -3.0006436 ]| 1.5400E-05
Vz [m/s] 0.0000 3183E-006, ©.3183E-006]| 6.3660E-07

|7



Lunar Landing - Perturbed 2BP

® Introduced perturbations:

e Moon oblateness
e Earth gravity field
® Sun gravity field

705.5 TF06 706.5 TFO7 Y075 TO8 7085 709 T09.5

e Validated Taylor Integration: X in

Variable Interval Enclosure Width

X [m] [ 705.9079 , 709.3936 ]| 3.4857

Y [m] [ 2132.9812 , 2147.2011 ]| 14.2199

Z [m] [ 985.8375 , 992.4736 ] 6.63601

Vx [m/s] [0.4504 , 0.4523 ] 0.0019

Vy [m/s] [ 1.0267 , 1.0494 ] 0.0227

Vz [m/s] [0.9344 , 0.9385 1 0.0041
18
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Conclusions and Future Work

Conclusions:

e DA computation 1s a powerful tool not only to address
uncertainties sensitivity but also to solve optimal robust
control problems in space flight dynamics

® TM can be use to solve validated control problem thus
avolding any Monte Carlo simulation run

Future work:
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e Extend TM validation to aerodynamic phases and to

larger value of initial uncertainties

® Address the optimal feedback control problem
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