Physics with Black Hole Systems of Known Mass at a Muon Collider

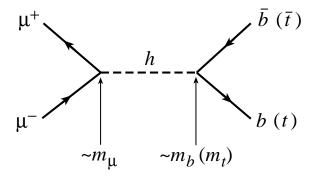
Romulus Godang

University of Mississippi

12/12-12/16, 2004 Muon Collider Simulation Workshop, Miami Beach, Florida

On behalf of

R. Godang, M. Cavaglia, D. Cline, L. Cremaldi, and D. Summers


hep-ph/0411248

MUC-CONF-PHYSICS-299

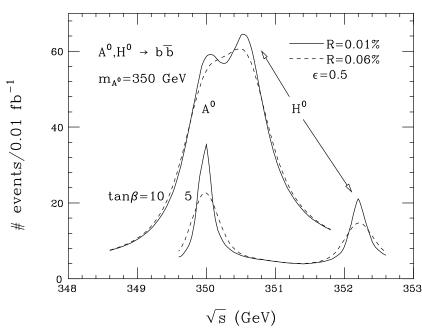
Introduction

- Unique features of a Muon Collider $(\mu^+ \mu^-)$: (Barger, Berger, Gunion, Han 1996)
- \circ Bremsstrahlung radiation effect is negligible (scales by m_{μ}^{-4})
- \circ Direct s-channel coupling to Higgs boson resonances is 40,000 $(m_\mu/m_e)^2$ greater for $(\mu^+\mu^- \to h)$ than for $(e^+e^- \to h)$

$$\implies R_{higgs}^{(\mu^+\mu^-)} \gg R_{higgs}^{(e^+e^-)}$$

o Beam energy resolution is not limited by beamstrahlung smearing, such that the beam energy resolution $\sigma_{\sqrt{s}} \leq \Gamma_h^{total}$

Neutral Higgs Bosons Search _

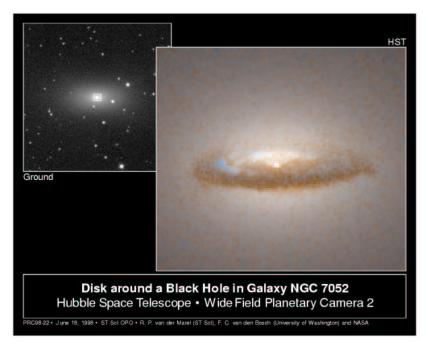

- ullet At Muon Collider, there are 3 possible techniques for searching heavy neutral higgs bosons: H^0 (CP-even) and A^0 (CP-odd)
- 1. Scan for s-channel Higgs : 250 GeV $< m_{H^0/A^0} <$ 500 GeV; tan~eta > 3
- 2. Bremsstrahlung Tail : Good for higher $tan \ eta$
- 3. H^0 , A^0 and H^+H^- Production : for very heavy Higgs bosons (~ 10 TeV) (We focus only the first two techniques)
- Supersymmetry parameter $tan\ \beta \equiv v_2/v_1$, where v_1,v_2 is the vacuum expectation values of neutral members of Higgs doublet of MSSM
- In MSSM, the heavy Higgs bosons are largely degenerate \implies larger values of $tan \beta$ heighten this degeneracy: $(tan \beta=5, 10 \text{ and } 20)$

Scan for s-Channel Higgs

• The Higgs boson cross section in s-channel:

$$\sigma_h(\sqrt{s}) = rac{4\pi\Gamma(h o\muar{\mu})\Gamma(h o X)}{(s-m_h^2)^2+m_h^2(\Gamma_{tot}^h)^2} \Longrightarrow \sigma_{\sqrt{s}} = (2\;MeV)\left(rac{R}{0.003\%}
ight)\left(rac{\sqrt{s}}{100\;GeV}
ight)$$

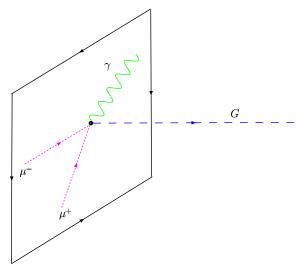
Separation of A⁰ & H⁰ by Scanning



- ullet For the larger tan~eta the resonances are clearly overlapping with $\Gamma_{H^0,A^0} \sim 0.1-0.6$ GeV
- ullet Muon Collider with sufficient energy resolution might be the only possible means for separating out these states: with R=0.01% and R=0.06%

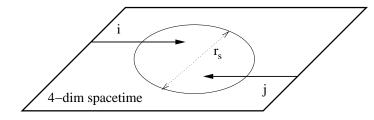
• We have observed Astronomical Black Holes (BH):

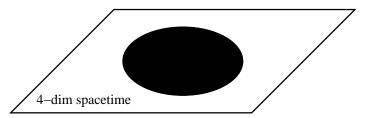
Hubble uncovers dust disk around a massive Black Hole


3,700 light-year-diameter dust disk

- The observable astronomical BH encourages us to explore miniature BH production in a Laboratory
- BH production in Lab could be the most promising signal of TeV-scale quantum gravity

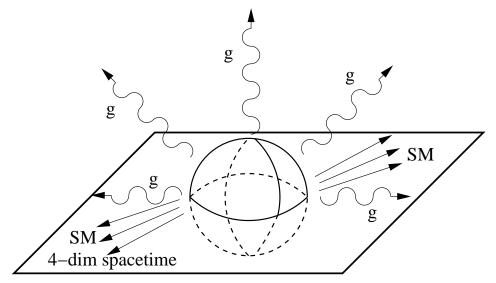
Extra Dimensions


 In large extra dimensions at the TeV energy scale, Gravitons can propagate in the n=D-4 extra dimensions



• The BH is characterized by the Schwarzschild radius

$$r_s = rac{1}{\sqrt{\pi}M_{pl}} \left[rac{8\Gamma\left(rac{n+3}{2}
ight)}{(2+n)}
ight]^{rac{1}{n+1}} \left(rac{M_{BH}}{M_{pl}}
ight)^{rac{1}{n+1}}$$


- o $M_{pl} \sim TeV$ is fundamental Planck scale
- ullet If the impact parameter $b < r_s$, o an Event Horizon is formed

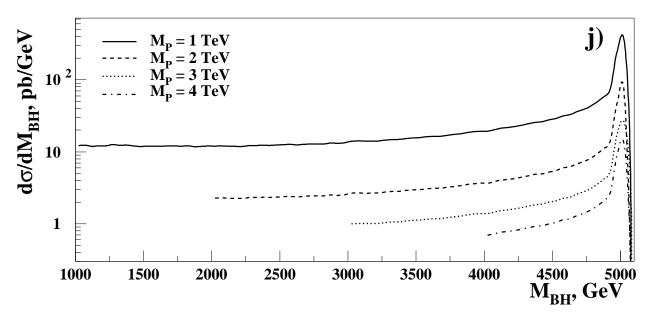
Hawking's Evaporation ____

- After Black Hole formed it will decay via Hawking evaporation process (Hawking radiation)
- The Black Holes emits into two modes :
- 1. Along the brane (brane mode): Standard Model fields
- 2. Into the extra dimensions (bulk mode): gravitons (invisible)
- Hawking radiation

 BH cross section can be estimated from the geometrical cross section (black disk)

$$\sigma_{ij o BH}pprox \pi r_s^2=rac{1}{M_{pl}^2}\left[rac{M_{BH}}{M_{pl}}\left(rac{8\Gamma\left(rac{n+3}{2}
ight)}{(2+n)}
ight)
ight]^{rac{2}{n+1}}$$

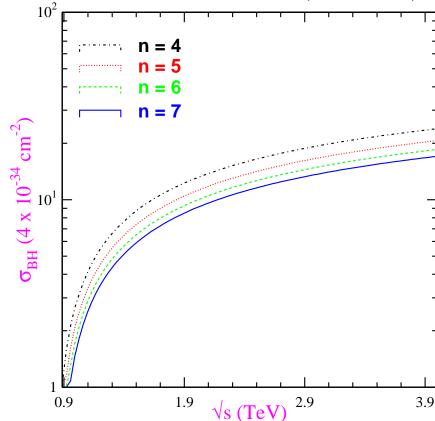
• LHC (proton-proton collider), we need to consider its cross section at the parton level (hampered by parton distributions)


$$\sigma_{pp o BH}pprox \sum_{ij}\int_{x_m}^1 dx \int_x^1 rac{dy}{y} f_i(y,Q) f_j(x/y,Q) \sigma_{ij o BH}(x,s,n)$$

- o $x_m = M_{BH(min)}^2/s$, $s = M_{pl}^2$ and Q = the momentum transfer
- o f_i , f_j = Parton Distribution Function (PDF)
- ullet For $(e^+-e^-\ {
 m collider})$ like CLIC, beamstrahlung smears the collision energy, and the NLC lacks the energy reach
- ullet Muon Collider ($\mu^+ \mu^-$ collider), the BH cross section is relatively simple

$$\sigma_{\mu\mu o BH}pprox\sigma_{BH}(s,n)$$

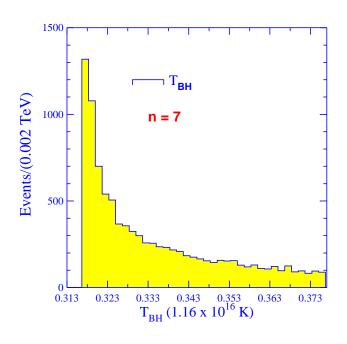
(it does not depend on the minimum M_{BH})

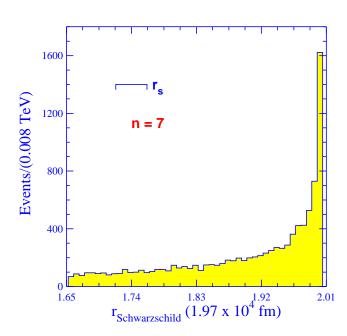

• BH Cross Section of 5 TeV $(e^+ - e^-)$ collider at CLIC Courtesy of Landsberg and Dimopoulos (hep-ph 0204031)

- The extra dimension n=4
- The CM-energy $\sqrt{s}=5~TeV$
- The beamstrahlung-corrected energy spectrum for CLIC machine is peaking at the nominal energy (5 TeV)

Cross Section at Muon Collider

• BH Cross Section for 4 TeV $(\mu^+ - \mu^-)$

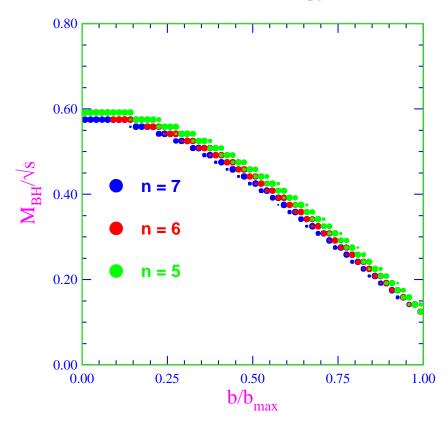



- n = D 4 extra dimensions
- ullet \sqrt{s} = 4 TeV CM-energy $\Longrightarrow \sigma_{BH} \sim 7 \; nb$
- $\begin{array}{c} \bullet \ \ \text{Using} \ \mathcal{L}_{\mu^+\mu^-} \sim 10^{33} (cm^{-2}s^{-1}) \Longrightarrow \text{BH production rate} \sim \text{7 BH/s} \\ \Longrightarrow \tau_{BH} \sim 10^{-27}s \end{array}$

Temperature and Radius

- BH decay depends on Hawking temperature and is proportional to the inverse radius
- Hawking temperature of (n+4)-dimensional BH:

$$T_H=M_{pl}\left[rac{M_{pl}}{M_{BH}}rac{n+2}{8\Gamma\left(rac{n+3}{2}
ight)}
ight]^{rac{1}{n+1}}rac{n+1}{4\sqrt{\pi}}=rac{n+1}{4\pi r_s}$$
 where r_s is Schwarzschild radius



- The higher CM-energy (or the higher extra dimension),
 - ⇒ the heavier and the colder BH

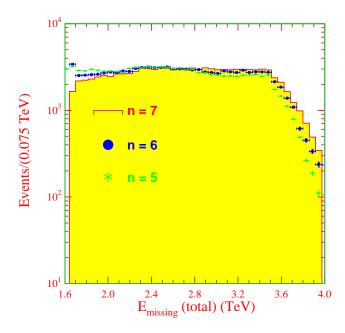
Horizon Formation

• Horizon formation of CM-energy of 4 TeV with impact parameter b

- The energy trapped by the horizon is a function of the impact parameter
- \bullet For head-on collision, $\sim 60\%$ of CM-energy trapped by the horizon
- ullet When extra dimension increases $\Longrightarrow M_{BH}/\sqrt{s}$ decreases

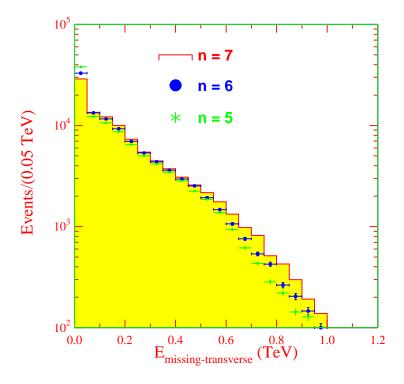
We use Yoshino and Nambu's model (PRD 67, 2003)

Total Missing Energy


ullet Total missing energy (E_{miss}^{Total}) provides a signature of un-observed gravitons and neutrinos that are emitted $(E_{miss}^{Total}=2.7~{
m TeV})$

$$\circ \ E_{miss}^{Total} = E_{miss}^{Formation} + E_{miss}^{Evaporation}$$

o
$$E_{miss}^{Evaporation} = \sum_{i} N_{i} E_{i}$$


 N_i = number of un-observed particles (neutrinos and gravitons)

 E_i = its corresponding missing energy at evaporation process

Transverse Missing Energy

- ullet Transverse missing energy (E_T) is coming from the transverse momentum of neutrinos and gravitons $(E_T=190~{
 m GeV})$
- Note that we assume all gravitons emit in brane modes
- \circ E_T distribution with different extra dimensions

BH Signatures ____

- What are the BH signatures experimentally?
- 1. Large cross section rate determined by the dimensionality of the extra dimensions (Giddings & Thomas 2002)
 - \Longrightarrow we have a relatively high cross section \sim 7 nb
- 2. Large missing energy (Cavaglia, Das & Maartens, 2003)
 - \Longrightarrow we have $E_{miss}^{Total} \sim$ 2.7 TeV
- 3. Visible transverse missing energy (Giddings & Thomas 2002)
 - \Longrightarrow we have $E_T\sim 190$ GeV
- 4. The typical ratio of hadron to lepton in the evaporation process is 7:1
- 5. The typical ratio of hadron to photon is 60:1

Summary

- ullet Muon Collider is a good place to study a direct s-channel Higgs boson, and to differentiate between A^0 and H^0
- ullet Muon Collider at $4\ TeV$ is a suitable place for producing miniature Black Holes with no beamstrahlung smearing
- Muon Collider provides a relatively high and constant cross section of BH

 $\sigma_{\mu\mu o BH}pprox\sigma_{BH}(s,n)$ (only depend on CM-energy and extra dimensions)

$$\circ~\sigma_{BH}\sim 7~nb$$
, using $\left[\mathcal{L}_{\mu^+\mu^-}\sim 10^{33}(cm^{-2}s^{-1})
ight]$ \Longrightarrow BH production rate ~ 7 BH/s $(au_{BH}\sim 10^{-27}s)$

- BH system (BH + gravitons) produced at rest with known mass
- Missing energy and transverse missing energy help us to explore gravitons, extra dimensions, Hawking radiation and quantum remnants