Probing Materials' Behavior using Fast Electrons

Yimei Zhu

Dept. of Condensed Matter Physics Brookhaven National Laboratory Long Island, NY 11973

Workshop on Ultrafast Dec 9-12, 2013, Key West, FL

180° ferroelectric domain wall in multiferroic ErMnO₃

Er Mn O

D

P_s

1 nm

MG. Han /BNL

Krivanek et al, Nature (2010)

Imaging atoms

Single Si atom on graphene

Single BN layer

red: B; yellow: C; green: N; blue: O

EELS mapping: La_{0.7}Sr_{0.3}MnO₃/SrTiO₃

Muller et al Science 319, 1073 (2008)

Krivanek et al, Nature (2010)

Imaging atoms

Single Si atom on graphene

Single BN layer

red: B; yellow: C; green: N; blue: O

EELS mapping: La_{0.7}Sr_{0.3}MnO₃/SrTiO₃

Muller et al Science 319, 1073 (2008)

Thermal Magnetic Field Noise Limits Resolution in Transmission Electron Microscopy

Stephan Uhlemann,^{*} Heiko Müller, Peter Hartel, Joachim Zach, and Max. Haider CEOS Corrected Electron Optical Systems GmbH, Englerstraße 28, 69126 Heidelberg, Germany (Received 6 May 2013; published 22 July 2013)

Atomic surface imaging with secondary electrons

 $SrTiO_3$

Atomic surface imaging with secondary electrons

Zhu, et al, Nature Materials, 8, 808 (2009)

Imaging surface U atoms

Uniqueness of electron scattering

Sensitive to valence electrons at small scattering angles

Direct Imaging of Charge Modulation

Yimei Zhu

Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973

J. Tafto

Department of Physics, University of Oslo, P.O. Box 1048, 0316 Blindern, Oslo 3, Norway (Received 7 September 1995)

Picometer Accuracy in Measuring Lattice Displacements Across Planar Faults by Interferometry in Coherent Electron Diffraction

Lijun Wu, Yimei Zhu,* and J. Tafto[†]

Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973 (Received 12 June 2000)

$$\varphi_{g} = \sum_{m,n} F_{g} \exp 2\pi i \left(\frac{\sqrt{r^{2} + H^{2}}}{\lambda} - \vec{r} \cdot \vec{g} \right)$$

Picometer Accuracy in Measuring Lattice Displacements Across Planar Faults by Interferometry in Coherent Electron Diffraction Lijun Wu, Yimei Zhu, and J. Tafto Phys. Rev. Lett. 85, 5126 (11 December 2000)

The Most Accurate Defect Measurement

11 December 2000

Fault lines between pure crystals affect con properties of semiconductors in computer c them precisely. A new technique, reported i electron beam to measure so-called stacking meter (1 pm), ten times better than previous purity of a coherent electron beam, the auth transmitted through large regions of pure cr technique may improve understanding of cr with material properties.

Conventional electron microscopes use inconerent bear heating a filament, so the electron waves originating fn filament are not synchronized. But coherent beams con from which the electrons are liberated by an electric fit coherently from such a source, just as light streaming t is more coherent than that of a lightbulb. Coherent elec become commercially available in just the past five yet

With improvements in coherent electron sources has co structures. The latest system, developed by Yimei Zhu uses one of the best electron microscopes in the world, the measurement does not

Accuracy : 0.01 Å

12 To make the measurement otherwise high quality this 10 $F_g^e \sim f_g^e \exp\left[2\pi i g \cdot (r + \Delta r)\right]$ Structure Factor ∆F 8 6 Ba₂Sr₂CaCu₂O₈ 2 0 (000)(050)(0100)(0150)(0200)Reflections

Imaging electrons, spins, electromagnetic potentials

Valence electron distribution

charge density ρ :

$$\rho(r) = \frac{1}{\Omega} \sum_{g} F_{g}^{x} \exp(2\pi i g \cdot r)$$

structure factor

 $\rho = -\nabla^2 V \varepsilon_0$

Electrostatic and magnetic potential distribution

electrostatic potential V magnetic potential B :

$$\phi(r) = C_E \int V(r,z) dz - \int \frac{e}{\hbar} \vec{A}(r,z) \cdot d\vec{r}$$

Aharonov-Bohm phase shift of the wave function

Mapping valence electron distribution with quantitative diffraction

$$\rho(r) = \frac{1}{\Omega} \sum_{g} F_{g}^{x} \exp(2\pi i g \cdot r)$$

$$F - F_{IAM} \longrightarrow FFT$$

CaCu₃Ti₄O₁₂: PRL 99 037602 (2007)

Experiment : ED + X-ray, 90K

DFT, w/o disorder

Probing bonding states and charge transfer with EELS

2-D Electron Gas: $SrTiO_3/RO/SrTiO_3$ (R=La, Pr, Nd, Sm, Y)

In collaboration with Prof. C.B Eom

Jang et al Science, <u>311</u>, 886 (2011)

Probing bonding states and charge transfer with EELS

2-D Electron Gas: $SrTiO_3/RO/SrTiO_3$ (R=La, Pr, Nd, Sm, Y)

Ondrej Krivanek

Direct imaging of ferroelectric order using holography

- RT ferroelectric order can be down to 10-15nm, below 10nm superparaelectric.

BaTiO₃ Curie temperature 130°C

Polking, Han, et al, Nat. Mat., **11** 700 (2012)

Direct observation of the Lithiation process in Li-ion-batteries

$FeF_2 + 2Li^+ + 2e^- \rightarrow 2LiF + Fe$

Wang et al Nature Comm. <u>3</u>, 1201 (2012)

Can we image individual spins?

For BCC Fe NP, the max phase shift is ~50urad, 10^{-3} of $2\pi/100$

	EH	LM	MFM	SP-STM	n	MOKE	X-rays
Strength	Mapping fields, measuring moments	Quick and easy, large field of view	Easy, cheap	Single-spin sensitivity, manipulation	Resolving unknown spin structures, spin wave Q(w)	Super fast dynamics	Super fast dynamics
Weakness	Requires practice	Qualitative	Perturbs sample	Surface-only	Bulk/crystal- only, requires a neutron source	Surface- only	Requires a synchrotron
Time resolution	100 ms	10 ms	1 s	1 s	n/a	1 fs	1 fs
Spatial resolution	3 nm	10 nm	50 nm	0.1 nm	n/a	100 nm	20 nm
Sensitivity	π/100 rad phase shift	1 μrad deflection	100 pN force	<1 µ _B moment	<1 μ_B moment	20 μrad rotation	?

Phase plate for magnetic imaging

www.Jeolusa.com

Imaging magnetic moments

Imaging vortex-precession orbit via resonance excitation

Vortex dynamics in nanomagnet

2um Py square

Pollard et al Nature Comm. **3** 1028 (2012)

Imaging vortex-precession orbit via resonance excitation

Our goals: understanding strongly correlated materials

Challenges:

Coupling electronic-lattice system

 \rightarrow charge, orbital and spin order

Strong interplay between charge, spins, orbital and lattice

 \rightarrow complex phase diagrams, exotic material properties

One solution:

Decouple the subsystems in the time domain and then observe the dynamics of subsystems separately.

<u>Ultrafast ED</u>: better time resolution & simultaneously observe diverse degrees of freedom.

Ultrafast electron diffraction at BNL

Currently optimized at 2.8MeV with 120fs resolution

- 2-4 MeV electron energy
- 100 fs pulse, Hz repetition rate -
- 10⁶ electrons in a single pulse -
- energy spread <0.01%
- 30urad divergence
- beam size on detector 200um
- Synchronization of RF & laser <50fs
- cryogenic capability
- longitudinal coherence length 1-2nm
- transverse coherence length ~10nm

XJ Wang's talk Monday morning

2H-TaSe₂

SP intensity reduced to ~ 0, without obvious recovery in the following 50 ps Coherent phonon: 2.5THz (~ 400fs)

P. Zhu et al, APL 2013

Ultrafast electron diffraction for spin dynamics ?

Acknowledgement

Atomic imaging: D. Su, H. Xin, H. Inada, J. Wall, L. Wu Electron diffraction: L. Wu, C. Ma, J. Tafto Holography: MG Han Magnetic imaging: S. Pollard, V. Volkov, M. Malac Ultrafast: XJ. Wang, P. Zhu, J. Hill, J. Cao

Supported by US DOE/BES

