

Ultrafast Metal-Insulator and Charge-Ordering Transitions in Correlated Transition Metal Compounds

Zhensheng Tao ⁽¹⁾, Tzong-Ru T. Han ⁽¹⁾, Kiseok Chang ⁽¹⁾, Faran Zhou ⁽¹⁾, Jenni Portman⁽¹⁾, He Zhang⁽¹⁾, Kevin Wang ⁽²⁾, Junqiao Wu ⁽²⁾, Christos D. Malliakas ⁽³⁾, Mercouri G. Kanatzidis ⁽³⁾, David Torres ⁽⁴⁾, Nelson Sepulveda ⁽⁴⁾, Subhendra D. Mahanti ⁽¹⁾, Martin Berz⁽¹⁾, Phillip M. Duxbury ⁽¹⁾, Chong-Yu Ruan ⁽¹⁾

- (1) Department of Physics and Astronomy, Michigan State University
- (2) Department of Materials Science and Engineering, University of California, Berkeley
- (3) Department of Chemistry, Northwestern University
- (4) Department of Electrical and Computer Engineering, Michigan State University

Outline:

- **1.** Metal-to-insulator phase transitions in VO₂
- 2. Ultrafast photo-induced phase transitions in 1T-TaS₂
- 3. New development of RF-compressed ultrafast electron microscope at MSU

VO₂, a prototypical example of strongly correlated electron system

- Metal-to-Insulator Transition (MIT)
 - F. J. Morin, Phys. Rev. Lett. 3, 34 (1959)

Structural Phase Transition

Peierls or Mott Insulator ?

Peierls band theory

 J. B. Goodenough, J. Sol. Stat. Chem., 3, 490 (1971)
 Mott-Hubbard model

 A. Zylbersztejn and N. F. Mott, Phys. Rev. B., 11, 4383 (1974)

Recent dynamical mean-field theory
S. Biermann, et al., Phys. Rev. Lett., 94, 026404 (2005)
C. Weber, et al., Phys. Rev. Lett., 108, 256402 (2012)

J. P. Pouget and H. Launois, Journal De Physique, C4, 49 (1976)

Cooperative electronic and structural phase transitions in VO₂ thin film

Atomic movements

3/ -

Unpublished result

MICHIGAN STATE

P. Baum, D-Sh Yang, A. H. Zewail, Science 318, 788 (2007)

Phase transition occurs in several steps

Decoupling of electronic and structural phase transitions in VO₂

Single-crystal VO₂ nanobeam placed on different substrates

Metal-to-insulator transition

Decoupling of electronic and structural phase transitions in VO₂

- Micrometer X-ray diffraction
- ✤ Thin film VO₂
- Electrically induced phase transition
 - B. Kim, at. el., Phys. Rev. B, 77, 235401 (2008)

- Scanning near-field optical microscope
- Strained thin film VO₂
- Near-IR optical pump heating

M. K. Liu, at. el., Phys. Rev. Lett. 111, 096602 (2013)

V-V dimerization and strong electron-electron correlation:

```
Coexist, cooperative, or competing?
```

Metallic monoclinic M3 state, decoupling of electronic phase transition and structural phase transition

Mott physics nature of the insulating gap

Cooperative dissolvation of insulating gap and V-V dimerization

A. Cavalleri, et al., Phys. Rev. B., 70, 161102(R) (2004)

P. Baum, et al. and A. H. Zewail Science, 318, 788 (2007)

Metal-insulator transition associated with charge-ordering in 1T-TaS₂

B. Sipos et al., Nat. Mat. 7, 960 (2008).

255 (1975)

Photo-induced CDW melting observed by ultrafast electron diffraction

Ultrafast Electron Crystallography with high energy electrons (~30 keV) can track the dynamics of long-range ordering (amplitude and period) and the short range fluctuations of lattice. Unpublished results

1T-TaS₂ phase transitions mapped by ultrafast crystallography

A. Suzuki et al., Sol. Stat. Comm. 53, 201(1985).

Development of ultrafast electron microscope at MSU

Development of ultrafast electron microscope at MSU

Spatial and temporal confocus of high-brightness electron pulse

Development of ultrafast electron microscope at MSU

Spatial and temporal confocus of high-brightness electron pulse

Imaging electron gun and camera for beam characterization

Electron diffraction

VO₂ film sample : insulator (<68°C, Monoclinic) to Metal (>68°C, Rutile)

MICHIGAN STATE

CR

Acknowledgements:

Thanks for the helps from

<u>UEM Project Collaborators</u> Prof. Martin Crimp Prof. Marcos Dantus <u>SLAC</u> Valery Dolgashev

<u>Graduate Student</u> Nan Du Machine Shop, MSU Thomas Palazzolo Thomas Hudson James Muns Robert Bennett ElectricalShop, MSU

Barry Tigner

<u>NSCL, MSU</u> Dr. Qiang Zhao Dr. Dan Morris Dr. Shen Zhao Dr. Nathan Usher

Thanks for the financial support from

