Ultrafast Structural and Electronic Dynamics of the Metallic Phase in a Layered Manganite

Luca Piazza

Laboratory for Ultrafast Microscopy and Electron Scattering

École Polytechnique Fédérale de Lausanne — Switzerland

200

December 10, 2013 - FEIS 2013 - Key West

People

STRUCTURAL DYNAMICS 1, 014501 (2014)

Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite

L. Piazza,¹ C. Ma,² H. X. Yang,² A. Mann,¹ Y. Zhou,³ J. Q. Li,² and F. Carbone¹

¹Laboratory for Ultrafast Microscopy and Electron Scattering, ICMP. Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland ³Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China ³Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 28 September 2013; accepted 31 October 2013; published online 2 December 2013)

< ロ ト < 団 ト < 三 ト < 三 ト</p>

SOC

 Manganese compounds AMnO₃ (A=La, Ca, Ba, Sr, Pb, Nd, Pr)

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

- Manganese compounds AMnO₃ (A=La, Ca, Ba, Sr, Pb, Nd, Pr)
- known since 50 years, present colossal magnetoresistance

DQC

< = > < = > < = > < = >

- Manganese compounds AMnO₃ (A=La, Ca, Ba, Sr, Pb, Nd, Pr)
- known since 50 years, present colossal magnetoresistance
- Iayered material

< ロ ト < 団 ト < 三 ト < 三 ト</p>

SOC

- Manganese compounds AMnO₃ (A=La, Ca, Ba, Sr, Pb, Nd, Pr)
- known since 50 years, present colossal magnetoresistance
- Iayered material
- rich phase-space

nan

- Manganese compounds AMnO₃ (A=La, Ca, Ba, Sr, Pb, Nd, Pr)
- known since 50 years, present colossal magnetoresistance
- Iayered material
- rich phase-space

Strongly correlated electron systems

- Spin Charge
- Orbital Crystal field

- Chemical doping - Magnetic field

- Temperature - Pressure

nac

- Manganese compounds AMnO₃ (A=La, Ca, Ba, Sr, Pb, Nd, Pr)
- known since 50 years, present colossal magnetoresistance
- Iayered material
- rich phase-space

Strongly correlated electron systems

- Spin Charge
- Orbital Crystal field

- Chemical doping - Magnetic field

- Temperature - Pressure

nac

How to measure the energy gap?

Optical absorption spectroscopy in diamond envil cells

10.12.2013 4 / 12

SAC

イロト イポト イヨト イヨト

How to measure the energy gap?

Optical absorption spectroscopy in diamond envil cells Limitations:

- for energy gaps of ~0.1eV we need wavelengths of ~10 μm
- pressure limited to $\sim 10^2$ GPa
- it's necessary a *big sample* (mm³)

イロト イポト イヨト イヨト

The *fs*-TEM approach

Stimulate a pressure wave with a laser pulse:

- not isotropic, we can choose which axis of the sample to analyze
- no intensity restrictions
- dimension of the monocrystal not critical, we can work on flakes to rule out border effects in polycrystals

Sar

< = > < = > < = > < = >

The fs-TEM approach

Stimulate a pressure wave with a laser pulse:

- not isotropic, we can choose which axis of the sample to analyze
- no intensity restrictions
- dimension of the monocrystal not critical, we can work on flakes to rule out border effects in polycrystals

Measure the system with fs-TEM:

- have access to atatic and time-dependent diffraction and electron energy loss spectroscopy
- straightforward observation of both structural and electronic properties of the same μ-size sample

イロト イポト イヨト イヨト

10.12.2013 5 / 12

Crystal structure

Crystal structure

Phase diagram

- 小田 ト - 三日

Luca Piazza (EPFL)

Ultrafast Dynamics of a Layered Manganite

10.12.2013 6 / 12

Charge and orbital ordering

Mixed valence state

Diffraction - temperature dependence

10.12.2013 7 / 12

< ロト < 回 ト < 注 ト < 注</p>

500

Diffraction - time dependence

- system in the metallic phase
- decrease of the intensity of Bragg peak due to Debye-Waller effect
- drum-like oscillation of the flake
- termal expansion of the sample

10.12.2013 8 / 12

500

EELS - time dependence

Luca Piazza (EPFL)

Ultrafast Dynamics of a Layered Manganite

10.12.2013 9 / 12

DQC

DFT simulations

Luca Piazza (EPFL)

もしゃ 山下 エルト 山下 エーション

10.12.2013 10 / 12

Differential EELS spectra - Oxygen K-edge and energy bandgap

DQC

• we cannot directly observe the evolution of the energy gap due to insufficient energy resolution

990

< = > < = > < = > < = >

- we cannot directly observe the evolution of the energy gap due to insufficient energy resolution
- the DFT model reproduces correctly the static energy loss spectrum of the system

Sac

< = > < = > < = > < = >

- we cannot directly observe the evolution of the energy gap due to insufficient energy resolution
- the DFT model reproduces correctly the *static* energy loss spectrum of the system
- dynamic informations from time-resolved diffraction permit to extend the simulation in the time domain

《口》 《圖》 《문》 《문》

- we cannot directly observe the evolution of the energy gap due to insufficient energy resolution
- the DFT model reproduces correctly the *static* energy loss spectrum of the system
- dynamic informations from time-resolved diffraction permit to extend the simulation in the time domain
- we can indirectly obtain informations about crytical properties not easily accessible (energy gap)

イロト イロト イヨト イヨト

- we cannot directly observe the evolution of the energy gap due to insufficient energy resolution
- the DFT model reproduces correctly the *static* energy loss spectrum of the system
- dynamic informations from time-resolved diffraction permit to extend the simulation in the time domain
- we can indirectly obtain informations about crytical properties not easily accessible (energy gap)

Thank you for your attention!

イロト イポト イヨト イヨト