Ultrafast structure dynamics in metal films

Jim Cao

Physics Department & National High Magnetic Field Lab Florida State University

Outline

- Dynamics of thermal expansion induced by ultrafast heating
- Measuring electron Grüneisen parameter with UED
- Ultrafast demagnetization in Ni
- Summary and acknowledgements

Ultrafast Heating of Metal Film

Ultrafast excitation break the thermal equilibrium: $T_e \neq T_1$

Two coupled subsystems Electron: T_e Phonon: T_l Coupling constant: G

$$\begin{cases} C_e(T_e)\frac{\partial T_e}{\partial t} = K\nabla^2 T_e - G(T_e - T_l) + P(x,t) \\ C_l\frac{\partial T_l}{\partial t} = G(T_e - T_l) \end{cases}$$

e-ph thermalization: ~1-3 ps

Study the lattice response to the fs laser ultrafast heating

Ultrafast Heating of thin film and nanoparticles

Thin AI films

C. Thomsen, et al, PRL 53, 989-992 (1984)

 the stress contains both electron contribution and lattice contribution. Ag nano-particles

M. Perner, et al, PRL 85, 792-795 (2000)

The stresses are calculated from Two Temperature Model
Hot electrons make significant contribution

A direct measurement of lattice temperature is not achieved

Some Outstanding Issues

How does lattice response to ultrafast heating
Correlation between thermal and coherent motions
The role of hot electrons in thermal expansion

UED: a direct probe of structural dynamics, record both coherent and thermal lattice motions simultaneously in real time

Diffraction pattern of 20-nm AI film

2D diffraction pattern

Intensity curve

Convert 2-D diffraction data to 1-D intensity curve Pump: fluence ~ 2.3 mJ/cm², 2 mm beam size e-beam: 60 keV, <1000 e/pulse, ~400fs , ~300 μ m

Following the structural dynamics by taking snapshots of diffraction patterns at different delay times

Structural changes probed with diffraction

Three aspects of Bragg peak (position, intensity and width) give detailed knowledge of structure change

Coherent lattice motions: breathing motion along surface normal

- Coherent and in-phase motions of all Bragg peaks
- * Single mode with vibrational period $T \sim 6.3$ ps, standing wave
- * maximum displacement at time zero
- ♦ Detection sensitivity: $\Delta r/r \sim 0.02$ %, < milli-angstrom

H. Park, X. Wang, S. Nie, R. Clinite and J. Cao, Solid Sate Commun. 136, 559-563 (2005)

Displacive excitation of coherent phonon

DECP : Laser energy is deposited into the system quasi-instantaneously and alters the system equilibrium position.

$$\frac{d^2Q}{dt^2} + 2\beta \frac{dQ}{dt} + \omega^2 x = F / m = \sigma A / m$$

A: surface area σ : thermal stress

Thermal lattice motions $(T_l) \leftarrow \rightarrow$ thermal stress

Debye-Waller effect: $I_{hkl}(T) = I_o exp[-a(h^2+k^2+l^2)T]$

Debye-Waller effect

H. Park, X. Wang, S. Nie, R. Clinite and J. Cao, PRB Rapid Comm. 72, 100301(2005)

Transient Stress of ultrafast heating

$$\sigma = \sigma_e + \sigma_l = \gamma_e \Delta E_e + \gamma_l \Delta E_l$$
$$= \gamma_e C_e \delta T_e + \gamma_l C_l \delta T_e$$

 γ_e and γ_l are electronic and lattice Grüneisen constants C_e and C_l are heat capacities; ΔE_l and ΔE_e subsystem thermal energy

stress from lattice heating

$$\sigma_{l} = \gamma_{e} C_{l} \delta T_{l} = \gamma_{e} E_{total} (1 - e^{-t/\tau_{e-ph}})$$

Energy conservation $C_e \delta T_e + C_l \delta T_l = E_{total}$

Total stress

$$\sigma = \sigma_e + \sigma_l = -\gamma_e E_{total} e^{-t/\tau_{e-ph}} - \gamma_l E_{total} (1 - e^{-t/\tau_{e-ph}})$$

Measure the transient stress directly using UED

Harmonic Oscillator Approximation

$$\frac{d^{2}Q}{dt^{2}} + \beta \frac{dQ}{dt} + \omega^{2}x = \sigma$$
$$\sigma = \sigma_{e} + \sigma_{l}$$

$$= -\gamma_e E_{total} e^{-t/\tau_{e-ph}} - \gamma_l E_{total} (1 - e^{-t/\tau_{e-ph}})$$

$$\gamma_l = 2.16, \gamma_e = 1.6$$

Damped harmonic oscillator gives a very good overall fitting

Fitting without σ_e creates a significant phase lag near timezero

H. Park, et al, PRB Rapid Comm. 72, 100301(2005)

Dynamics of thermal expansion

- Both e⁻ and lattice heating contribute, electronic contribution is significant at early times
 - If $3\tau_{e-ph} \ll T/4$, lattice dominant

 $3\tau_{e-ph} \sim \text{or} > T/4$, electrons contribute significantly

Measurement of γ_e in Ni in time domain

Coherent lattice motions

$$\frac{d^2Q}{dt^2} + 2\beta \frac{dQ}{dt} + \omega_0^2 Q = \sigma(t)$$

$$\sigma = A - Be^{-t/\tau_{e-ph}}$$

$$\frac{A}{B} = \frac{\gamma_l}{\gamma_l - \gamma_e}$$

Overcome the LT restrictions, can measure γ_e of magnetic materials

 γ_e = 1.4 ± 0.3 at T = 680 K > Curie point 630 K

X Wang, et.al., Appl. Phys. Lett. 92, 121918 (2008)

S. Nie, X. Wang, H. Park, R. Clinite, J. Cao Phys. Rev. Lett. 96, 025901 (2006)

γ_e of Ni in paramagnetic state

 γ_e of paramagnetic state Ni has been calculated with DFT

- Finite temperature LMTO band-structure method and LSDA
- Local magnetic moment (*LM*) that persists in paramagnetic state Ni was neglected

**

$$\gamma_e = 1.3$$
 $\alpha_e = \frac{\gamma_e}{3BV} (C_e + \frac{1}{4}I \frac{\partial \langle m^2 \rangle}{\partial T})$

Levy et al. Phys. Rev. B 35, 9474 (1987)

Good agreement with FED measurement

LM does not play an important role in electronic thermal expansion

(Y. Kakehashi and J. H. Samson, PRB 34, 1734 (1986))

Laser-induced Demagnetization in Nickel

Demagnetization

Ultrafast demagnetization: spin-lattice interaction?

•Time-resolved *MOKE* •Demagnetization time $\tau_M < 1$ ps •Spin temperature $T_s < T_e$

Beaurepaire *et al.*, *Phys. Rev. Lett.* **76**, 4250 (1996)

•Time-resolved *MSHG* •Demagnetization time $\tau_M < 280$ fs •Spin temperature $T_s(t) \sim T_e(t)$

Hohlfeld *et al.*, *Phys. Rev. Lett.* **78**, 4861 (1997)

Traditional spin-orbit coupling: ~ 100 ps, too slow

Probe ultrafast demagnetization with UED

Ultrafast demagnetization ?

★ Yes. $\Delta E_e \longrightarrow \Delta E_s$ then, $\Delta E_{es} \longrightarrow \Delta E_L$ (two step)
★ No. $\Delta E_e \longrightarrow \Delta E_s$ $\Delta E_e \longrightarrow \Delta E_L$ (one step)

Probe demagnetization dynamics by monitoring energy flow rate among sub-systems in real time

Energy Flow among Three Systems

τ_{e-ph} vs Sample Temperature

base temperature(K)

• e-ph coupling time curve resembles the heat capacity curve

 smear-out effect due to high excitation energy

• TTM simulation (assume electron kinetic energy and magnetic order can be characterized by one temperature)

$$C_{e} + C_{m})\frac{\partial T_{em}}{\partial t} = -(G_{el} + G_{ml})(T_{em} - T_{l})$$

$$C_{l}\frac{\partial T_{l}}{\partial t} = +(G_{el} + G_{ml})(T_{em} - T_{l})$$

X. Wang, et.al., Phys. Rev. B 81, 220301(R) (2010)

The demagnetization is completed in less than 2 ps

Ultrafast Electron diffuse scattering (EDS)

Bragg Peaks + diffuse scattering

DS: due to divergence from an ideal crystal, locals hort rangedcorrelationsdefects and disorder) diffuse ring $\leftarrow \rightarrow$ pair correlation function order-disorder transition, melting

Zhu, UED SJTU

Summary

- Under ultrafast heating condition, electronic thermal stress contributes significantly to the lattice thermal expansion
- A time domain method of measuring electronic Grüneisen parameter γ_e at or above room temperature
- Measure \(\gamma_e\) of Ni in paramagnetic state and local magnetic moment does not contribute significantly to electronic thermal expansion
- Optical-induced ultrafast demagnetization in Ni was confirmed from the UED

Acknowledgments

DC UED work (FSU): Drs. Hyuk Park, Shouhua Nie Xuan Wang, Rick Clinite, Junjie Li

<u>Martech group</u> <u>Physics department machine shop</u>

National Science Foundation, Research Corporation, FSU & MagLab