MeV Ultrafast Electron Diffraction and Microscopy Development at SJTU

Dao Xiang, for the MeV UED/UEM group Shanghai Jiao Tong University

5/8/2015

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

Accelerators for shaping the world

Accelerator-based MeV UED/UEM at SJTU

- **1.** Femtosecond laser
- 2. High rep-rate rf source
- 3. High rep-rate rf gun
- 4. Advanced sample chamber
- **5.** Superconducting solenoid
- 6. Advanced detection system
- ✓ First proposal to NSFC in 03/2011
- ✓ Project funded in 11/2013
- ✓ Construction: 2014 2018

Mode	Diffraction	Microscopy	Rep-rate
State-of-the-art	~200 fs	10 ns/10 nm	~100
Goal	~50 fs	10 ps/10 nm	~1000

Strategic plan for a UED/UEM user facility

- ✓ Test critical technologies at the test facility
- Collaborate with national labs
- ✓ Let the users decide what they want

UED/UEM center at SJTU

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

Accelerator based UED

Accelerator based UED

either degrade the sample or mask the structural dynamics²⁰. Here we show that a recently developed, ultrabright femtosecond electron source^{7–9} makes it possible to monitor the molecular motions in the organic salt (EDO-TTF)₂PF₆ as it undergoes its photo-induced

acting degrees of freedom. Here, we demonstrate that recent improvements in ultrafast electron diffraction (UED) instrumentation (4–7) provide such a capability by exploring the nature of the semiconductor-to-metal transition in $VO_2(8)$.

Siwick's group, Science 2014

Achieved ~200 fs resolution and excellent S/N with rf compression

Miller's group, Nature 2013

PRL 113 235502 (2014)

Accelerator based UEM

A representative design for 10 ps & 10 nm resolution

- S: gun solenoid
- C: condenser lens
- O: objective lens
- I: intermediate lens
- P: projection lens
- D: detector

Formulation with accelerator terminology

- Imaging condition: R₁₂=R₃₄=0
- Chromatic aberration: T₁₂₆
- Spherical aberration: U₁₂₂₂

$$T_{ijk} = \sum_{m=1}^{6} R_{im}^{(2)} T_{mjk}^{(1)} + \sum_{m,n=1}^{6} T_{imn}^{(2)} R_{mj}^{(1)} R_{nk}^{(1)}$$

Xiang et al., Nucl. Instru. Meth. A 759, 74 (2014); Li and Musumeci, PR Applied 2, 024003 (2014)

Conceptual design of the MeV UED/UEM facility

5.43

5.42

5.4

5.39

(New) 5.41

ш

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

Construction of a new experimental hall

06/2014

08/2014

09/2014

10/2014

12/2014

Construction of a new experimental hall

Grounding system

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

Commissioning the UED test facility

Photocathode rf gun based MeV UED test facility

High quality AI and Au diffraction pattern (Fu et al., Rev. Sci. Instru. 2014)

Commissioning the prototype UED machine

Finding time-zero with the perturbation from laser-induced plasma

30

20

First MeV UED pump-probe experiment in China (Zhu et al., CPL, 2014)

Initial test of a prototype MeV UEM

Test of MHz MeV UED (PKU-SJTU collaboration)

DC-SRF 3.5 cell 1.3 GHz gun

- ✓ Beam energy: 3.4 MeV; Rep-rate: 81.25 MHz
- \checkmark Beam current: up to ~1 mA (~10¹⁶ e/s)
- ✓ Permanent damage induced by 81.25 MHz beam;
- ✓ Forbidden peaks are observed;

 ✓ Likely due to heat-stress related distortion (surface bulging; 2.2 microsecond recovery time).

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

2. Corrugated structure to reduce beam energy spread

Quadratic chirp removal with an rf cavity

- ✓ Requires one more rf station
- ✓ Requires accurate control of the phase
- **Beam energy reduces by 1/n²**

Quadratic chirp removal with a passive device

2. Corrugated structure to reduce beam energy spread

2. Corrugated structure to reduce beam energy spread

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

Development of high-field objective lens

1. Superconducting solenoids

Development of high-field objective lens

2. Room-temperature electromagnetic solenoids

Development of high-field objective lens

3. Permanent magnet solenoid (PMS) and quadrupole (PMQ)

$$\frac{1}{f} = \frac{e^2}{4\gamma^2 m^2 v_z^2} \int I$$

Z 2010 0 1020

0.2

-0.2

-0.6

-0.8

-1.0

Bz [T] _0.4

X=Y=0

0

Z [mm]

-100

-200

High-field lens needed for MeV UEM

100 150

X

simulation

200

100

✓ Russian quadruplet (FDFD)
✓ X/Y back focal planes coincide
✓ Movable with in-vacuum motors

PMQ to be delivered to SJTU in 06/2015

- 1. MeV UED/UEM project at SJTU
- 2. Current status of the UED/UEM project
 - 2.1 Conceptual Design
 - 2.2 Civil construction
 - 2.3 Commissioning UED/UEM test facility
 - 2.4 Improving beam brightness
 - 2.5 Development of high-field objective lens
- 3. Future plans

Future plans

✓ Gatan K2 detector;

✓ A dedicated intense THz source for THz-pump UED-probe.

Thanks!

Everyone is welcome to use our UED/UEM facility.