Femtosecond Electron Imaging and Spectroscopy (FEIS-2) 2015 Lansing, Michigan, May 6-9, 2015.

Oriented single crystal photocathodes: A route to high-quality electron pulses

W. Andreas Schroeder Benjamin L. Rickman and Tuo Li

Physics Department, University of Illinois at Chicago

Department of Energy, NNSA DE-FG52-09NA29451

UED: Resolution Limit

UIC

- Non-relativistic regime

D.H. Dowell & J.F. Schmerge, *Phys. Rev. ST – Acc. & Beams* **12** (2009) 074201 K.L. Jensen et al., *J. Appl. Phys.* **107** (2010) 014903

Photoemission Theory I

- The semi-classical three-step 'Spicer' model

1. Photoexcitation

2. Transport to surface

- 3. Emission from surface
- Transport ⇒ *Real* electronic band
 ∴ Photoexcitation into upper state near vacuum level

UIC

- Emission from upper excited state
 - $\Rightarrow High \ quantum \ efficiency \ (\eta_{PE}) \\ \textbf{AND}$

Response time \approx Lifetime (ps-ns)

:. NOT suitable for UED

Examples: NEA GaAs, KCsSb, GaSb, diamond, Cu(111)?

C.N. Berglund & W.E. Spicer, *Phys. Rev.* **136**, A1030-A1044 (1964) P.J. Feibelman & D.E. Eastman, *Phys. Rev. B* **10**, 4932-4947 (1974)

Photoemission Theory II

– The 'quantum mechanical' one-step model

Photoexcitation into a *virtual* state (excited copy of filled band) emitting into the vacuum in one step

• Low $\eta_{PE} \sim 10^{-5}$ to 10^{-7}

'Instantaneous' emission process

Suitable for UED

Examples: Most metals

G.D. Mahan, Phys. Rev. B 2, 4334-4350 (1970)

Experiment: Solenoid Scan

UIC

- 2W, 250fs, 63MHz , diodepumped Yb:KGW laser
 ~4ps at 261nm (ħω = 4.75eV)
- YAG scintillator optically coupled to CCD camera
 - Beam size vs. magnetic coil (lens) current measured
 - Analytical Gaussian (AG) pulse propagation model to extract Δp_{T0}

J.A. Berger & W.A. Schroeder, J. Appl. Phys. 108 (2010) 124905

Results: Polycrystalline Cr

- Solenoid scan measurement

Results: Metals

UIC

- Ten *polycrystalline* metal photocathodes

 Only Ag and Cu (noble metals) consistent with

$$\Delta p_{T,\text{expt}} = \Delta p_{T0} = \sqrt{\frac{m_0(\hbar\omega - \phi)}{3}}$$

for others

$$\Delta p_{T,\text{expt}} < \sqrt{\frac{m_0(\hbar\omega - \phi)}{3}}$$

⇒ Band structure effects? – e.g. $m^* < m_0$

B.L. Rickman et al., Phys. Rev. Lett. 111 (2013) 237401

Band Structure Effects

– Transverse momentum $p_{\rm T}$ conserved in photoemission

Work Function Anisotropy

– Example: $\phi_{(ijk)}$ for Mo by electron emission microscopy

UIC

- Polycrystalline metal photocathodes generate inhomogeneous electron beams
- Any photoemission analysis *must* include $\phi_{(ijk)}$

D. Jacobson & A. Campbell, Metall. Trans. 2, 3063-3066 (1971)

Thin-slab Evaluation of $\phi_{(ijk)}$

- Example: $\phi_{(001)} = 4.53(\pm 0.05)$ eV for Mo

Photoemission Simulation: Ag

UIC

– fcc crystal lattice

Photoemission Simulation: Ag

UIC

– fcc crystal lattice

Photoemission Simulation: Ag

Photoemission Simulation: Mo

UIC

– bcc crystal lattice

Photoemission Simulation: Mo

UIC

- bcc crystal lattice

Photoemission Simulation: Mo

– bcc crystal lattice

Photoemission Simulation: Nb

UIC

– bcc crystal lattice

Photoemission Simulation: Nb

UIC

– bcc crystal lattice

Photoemission Simulation: Nb

– bcc crystal lattice

Experiment vs. DFT Analysis

NOTE:

 Polycrystalline vs. singlecrystal comparison

- Other crystal faces with smaller $\Delta E = \hbar \omega - \phi_{(ijk)}$ contribute lower Δp_{T0}
- DFT analysis at $T_e \rightarrow 0K$ Experiment at 300K

Temperature dependence: T_e

T. Vecchione et al., TUPSO83, Proc. of FEL 2013, pp. 424-426.

Summary

UIC

Photocathodes for UED

- *Single-crystals* for homogeneous electron beam generation ($\hbar \omega > \phi_{(ijk)}$) \Rightarrow Higher η_{PE} (?) and higher conductivity (σ and κ)
- *Virtual* excited state emission \Rightarrow Instantaneous response
- Emission from low m^* states: $p_F > p_{T,max} \Rightarrow \text{Lower } \Delta p_{T0}$
- 'Hole-like' emission states are preferred: Even lower Δp_{T0} and less sensitive to T_e (e.g., laser heating)
- Robust (e.g., high m.p.) and chemically inert

Future work

- Direct comparison with theory: Single-crystal photocathodes
- Crystalline compounds: Mo_xNb_{1-x} , semiconductors, A_3B (e.g., Nb_3Sb), ...
- Search for *ultra-low* Δp_{T0} solid-state photocathodes:

 Δp_{T0} approaching cold atom electron sources \Leftarrow TID issues?

Finally ...

UIC

Calculating $\Delta p_{\rm T}(ijk)$ for *all* elemental metals

Results available on-line at http://people.uic.edu/~tli27/Database.html.
 E.g., hcp Mg(1010) face emission:

X.J. Wang et al., Proceedings of LINAC2002, Gyeongju, Korea.