Concepts and perspectives on photo-induced structural phase transitions

Keiichiro Nasu

Institute of materials structure science High energy accelerator research organization (KEK) 1-1, Oho, Tsukuba, Japan

High energy accelerator research organization IMSS, KEK, Tsukuba, Japan

Photoinduced structural phase transitions

K. Nasu, Colloquium, European Physical Journal B 75(2010)415.

Photoinduced structural phase transition

There discovered a new class of solids, which, being shone only by a few visible photons, become pregnant with an excited nano ~ micron domain, that has new structural and electronic orders (, charge, spin and gauge), quite different from the starting ground state.

Clarify,

1) conditions of its occurrence (, hidden multi-stability),

Purpose

- 2) its mechanism (, criticality, initial condition sensitivity),
- 3) how different from thermally excited phases, and how to optically control nano-domains.

Rep. Prog. Phys. 67(2004)1607; Physics Report 465 (2008) 1

Hidden multistability and photoinduced phase transitions

False vacuum and true vacuum in the scalar field theory related with the inflation universe

Photoinduced neutral nano domain in ionic phase of organic charge transfer crystal TTF-CA

TTF \bigcirc CA \bigcirc TTF⁺ \bigcirc CA⁻

AO AO AO AO AO AO AO

 $\frac{h\nu}{\partial \theta} = \frac{e^{-}}{\partial \theta}$

Ionic Phase

Ionic Phase (Dimer) True ground state

Neutral Phase (Monomer) False ground state

> **Charge Transfer Exciton**

Neutral Nano Domain

Ionic Phas

FIO FIO

HO HO I Neutral Nano Domain

Visible-light-induced reversible photo-magnetism in Rubidium Manganese Hexa-Cyano-Ferrate

Tokoro, Matsuda, Nuida, Moritomo, Ohoyama, Dangui, Boukheddaden, Ohkoshi, Chem. Mater. 20 (2008) 423.

Early stage of graphite-diamond structural phase transition induced by inter-layer charge transfer excitations in the visible region

Experimental discoveries by Tanimura and Kanazaki

- **1. Exciting light (1.6 eV) should be polarized perpendicular to layer.**
- 2. Nonlinear and multi-photon process, less than 10 photons.
- **3.** Too strong excitation is rather harmful, resulting in two layers abrasion.
- 4. Femto-second pulse excitation, not nano-second
- 5. Resultant domain size includes about 1000 carbons
- 6. Structural phase transition due to inter-layer bond formation (STM image)
- 7. Resultant domain is quite stable(, more than 10 days)

by Tanimura and Kanazaki

Vs = -20 mV

STM

by Tanimura and Kanazaki

Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography

Raman, Murooka, Ruan, Yang, Berber and Tomanek, Phys.Rev.Lett. 101(2008) 077401.

Scenario for early stage Spontaneous, successive broken symmetries

Shirotani, Inokuchi, Mol.Cryst.Liq.Cryst. 461(2007)93.

Hexagonal graphite – [ABAB] stacking

Graphite(sp²) and diamond(sp³) structures

LDF calculations by L. Cohen, S. Fahy and S.G. Louie

LDF calculation for graphite-diamond transition

S. Fahy et al, Phys. Rev. B35(1987)7623. Tateyama et al, Phys Rev.B54(1996)14994.

Energy barrier ~ 0.3 eV/carbon

However, it is a hypothetical uniform transformation.

All the macroscopic number of carbons are assumed to move simultaneously ?

Real process is an iterative local domain formation, never be simultaneous.

More high barrier

Local domain formation is the essential process.

Local distortion of graphite layers

Trial distortion pattern

Brenner's 3-, 4-body potential

D.W. Brenner, Phys. Rev. B 42 (1990)9458.

Comparison

Brenner's potential

Semi-empirical inter-atomic potential, 3- or 4- body force, Direction of chemical bonds,

- Gives proper data for both graphite and diamond structures,
 - Short range (2.0 Å) No information about interalyer coupling

Lennard-Jones' potential

• Two body potential,

- Depends only on bond length
- No information for chemical bond structure

New domain structure by Brenner potential

High energy "L2" diaphite domain by Brenner

Ohnishi, Nasu, PRB 80 (2009)014112.

New localized states and pseudo gap

V-shaped semi-metallic electron system

$$H_{e} = \sum_{j=1,2} \sum_{i=1,2} sign(i-3/2) \sum_{k,\sigma} E(k) a_{k\sigma ij}^{+} a_{k\sigma ij} a_{k\sigma ij}, E(k) = \sqrt{k_{x}^{2} + k_{x}^{2}}$$

$$j = 1,2 \quad \text{Layer number,}$$

$$i = 1,2 \quad \text{Valence or conduction band,}$$

$$k, \sigma(=\alpha, \beta) \quad \text{wave vector and spin} \quad \text{in a square lattice, lattice constant is unit of length}$$

$$a_{k \sigma i j} \equiv N^{-1/2} \sum_{\ell} e^{-ik \cdot \ell} a_{\ell \sigma i j}$$

Inter-layer phonon

$$H_{p} = \frac{\omega}{2} \sum_{\ell} \left[-\frac{\partial^{2}}{\partial Q_{\ell}^{2}} + Q_{\ell}^{2} \right]$$

Inter-layer Coulomb attraction between electron and hole, depending on \mathcal{Q}_ℓ

$$H_{c} = \sum_{\ell,\sigma,\sigma'} U(Q_{\ell}) \Big[(n_{\ell\sigma 11} - \langle n_{\ell\sigma 11} \rangle) (n_{\ell\sigma' 22} - \langle n_{\ell\sigma' 22} \rangle) + (n_{\ell\sigma 21} - \langle n_{\ell\sigma 21} \rangle) (n_{\ell\sigma' 12} - \langle n_{\ell\sigma' 12} \rangle) \Big]$$
$$n_{\ell\sigma ij} \equiv a_{\ell\sigma ij}^{\dagger} a_{\ell\sigma ij} ,$$

$$<\cdots> = \frac{Trace (e^{-H_0 / k_B T_{em}} \cdots)}{Trace (e^{-H_0 / k_B T_{em}})},$$

 T_{em} absolute temperature,

Cho, Toyozawa, JPSJ 30, 1555 (1971)

Free carrier dissipation and self-localization dynamics

Classical dynamics of inter-layer σ-bond formation after self-localization

Dynamics of σ -bond formation after self-localization

Excitation density : 10% ($6240 \times 0.1 = 624$ excited sites)

Nishioka, Nasu, PRB, 82(2010)035440(1-7).

Inter-layer distance

Two possible ways of excitation

Simulation by localized 2-level electron-phonon system

Ground |g > and excited |e > states in each lattice site interacting by dipole-dipole in 2-D crystal,

Excited electronic domain formation and proliferation in the case of visible photon

Ishida, Nasu, PRL **100**(2008)1 16403.

0	0.33	0.66	1
---	------	------	---

Excited electronic domain formation, not by visible photon, but by short giant phonon (THz) pulse and its nonlinear propagation

