Concepts and perspectives on
photo-induced structural phase
transitions

Keiichiro Nasu

Institute of materials structure science

High energy accelerator research organization (KEK)
1-1, Oho, Tsukuba, Japan



High energy accelerator research organization ()
IMSS, KEK, Tsukuba, Japan

=
- -
T




Photoinduced structural phase transitions
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Photoinduced structural phase transition

There discovered a new class of solids, which, being shone
only by a few visible photons, become pregnant with an
excited nano ~ micron domain, that has new structural and
electronic orders (, charge, spin and gauge ), quite different
from the starting ground state.

. N

Clarity,
1) conditions of its occurrence (, hidden multi-stability ),
2) its mechanism (, criticality, initial condition sensitivity ),
3) how different from thermally excited phases, and

\_ how to optically control nano-domains. .
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Hidden multistability and photoinduced phase transitions

Condon  4ii00 nano~micron
state .
relaxation domain
Photo-
induced
structural

New lattice

hv I change
] structure
I Nb v ;I I and
hv | electronic

\MA | order

False

ground
True "V Thermal state
ground Jli enerey
state | | -~
Microscopic Macroscopic order
i |
lattice - = parameter of
distortion

phase transition
Proliferation




False vacuum and true vacuum in the scalar field theory
related with the inflation universe
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Photoinduced neutral nano domain in ionic phase
of organic charge transfer crystal TTF-CA
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Visible-light-induced reversible photo-magnetism in
Rubidium Manganese Hexa-Cyano-Ferrate
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Early stage of graphite-diamond structural phase transition induced
by inter-layer charge transfer excitations in the visible region
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Experimental discoveries by Tanimura and Kanazaki

1. Exciting light (1.6 eV) should be polarized perpendicular to layer.

2. Nonlinear and multi-photon process, less than 10 photons.

3. Too strong excitation is rather harmful, resulting in two layers abrasion.

4. Femto-second pulse excitation, not nano-second

5. Resultant domain size includes about 1000 carbons

6. Structural phase transition due to inter-layer bond formation ( STM image )

7. Resultant domain is quite stable(, more than 10 days )



STM image of graphite before and after
§ the illumination by photons (1.6 eV)
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Vs=-20 mV

STM
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graphite

Exciting light should be polarized
perpendicular to the layer,
parallel component gives no effect.

STM tip
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Direct observation of optically induced transient structures
in graphite using ultrafast electron crystallography
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Scenario for early stage
Spontaneous, successive broken symmetries
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Inferred inter-layer bond structure
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Local shear type displacement TS

Shirotani, Inokuchi, Mol.Cryst.Liq.Cryst. 461(2007)93.



Hexagonal graphite — | ABAB] stacking




Graphite(sp?) and diamond(sp?) structures

LDF calculations by L. Cohen, S. Fahy and S.G. Louie



LDF calculation for graphite-diamond transition

S. Fahy et al, Phys. Rev. B35(1987)7623. Tateyama et al, Phys Rev.B54(1996)14994.

Energy barrier ~ 0.3 eV/carbon

However, 1t 1s a hypothetical uniform transformation.

All the macroscopic number of carbons are assumed
to move simultaneously ?

Real process is an iterative local domain formation,
never be simultaneous.

More high barrier

Local domain formation is the essential process.




Local distortion of graphite layers

Trial distortion pattern
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Brenner’s 3-, 4-body potential

E= Z [VR(I‘U) IJ’ 1Jk) VA(IIJ)]
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D.W. Brenner, Phys. Rev. B 42 (1990)9458.



Comparison

Brenner’s potential Lennard-Jones’ potential

* Semi-empirical inter-atomic
potential, 3- or 4- body force, | * Two body potential
Direction of chemical bonds,

* Gives proper data for both

D 1
graphite and diamond el[;fln(tilsl only on bond
structures, 5
- ShO.l't range .(2-0 A)- - No information for
No information about chemical bond structure

interalyer coupling



New domain structure by Brenner potential
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Total energy [ eV ]

LDF theory for new domain structure

500 carbons
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High energy “L2” diaphite domain by Brenner

Ohnishi, Nasu, PRB 80 (2009)014112.



LDOS(arb.units)

LDOS(arb.units)

New localized states and pseudo gap
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Early time critical dynamics
Competition between
Electron-hole dimerization and Charge separation
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V-shaped semi-metallic electron system
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Inter-layer Coulomb attraction between electron and hole, depending on ¢,

Inter-layer phonon
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V-shaped energy band
E(k)= k2 + &
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Theory for dynamics
Bloch wave of (electron, hole and multi-phonon) coupled system
with total momentum k (= 0)
Attraction depends on phonon

center

Bloch
wave
k(=0)
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Cho, Toyozawa, JPSJ 30, 1555 (1971)



Free carrier dissipation and self-localization dynamics
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Classical dynamics of inter-layer o-bond formation

after self-localization

time: ¢
pico-sec.

Nishioka,
Nasu, PRB
80 (2009)

235420.



Dynamics of o-bond formation after self-localization
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Cooperative nonlinear domain growth
by random and multi-excitation

,w, > \L Coulomb EQ_W,‘
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Excitation density : 10% (6240 X 0.1 = 624 excited sites )

Inter-layer shear | 1.0 ps

Inter-laver distance
Nishioka, Nasu, PRB, y 2.00A I I 3.35A

82(2010)035440(1-7).



Importance of shear fluctuation at the time of pulse excitation

6%

ions, excitation density:

itat

Two exc

Inter layer distance
2.00A I . 3.35A

7

o

== &

2 2 =

= = >,

S =

uw m

=l =

. S
-’ @ 2
- = g
= = 3
i =
)
N =
R ‘<
o B:
=}
-
2

Inter layer shear

J. Phys. CM. 24 (2012) 205402.



Two possible ways of excitation

Simulation by localized 2-level electron-phonon system

Ground |g > and excited |e > states in each lattice site
interacting by dipole-dipole in 2-D crystal,

g>
0 0 O O
Visible

(O—C—0 (O—( photon
O O 0 O
-0 o 0 o
In both cases, excited
electronic domain can V Ishida,Nasu

proliferate. Phys. Lett.

THz pulse A378 (2014)382



Excited electronic domain formation and proliferation
Ishida,

in the case of visible photon Nasu, PRL
100(2008)1
16403.
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Excited electronic domain formation, not by visible photon, but
by short giant phonon (THz) pulse and its nonlinear propagation
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Confer to KdV, Toda lattice,
Kru-Shu theories.




