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Photoinduced structural phase transitions



Photoinduced structural phase transition

There discovered a new class of solids, which, being shone 
only by a few visible photons, become pregnant with an 
excited nano ~ micron domain, that has new structural and 
electronic orders (, charge, spin and gauge ), quite different 
from the starting ground state.

Purpose

Rep. Prog. Phys.  67(2004)1607;   Physics Report 465 (2008) 1 

Clarify,
1) conditions of its occurrence (, hidden multi-stability ),
2) its mechanism (, criticality, initial condition sensitivity ),
3) how different from thermally excited phases, and

how to optically control nano-domains.
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Tokoro, Matsuda, Nuida, Moritomo, Ohoyama, Dangui, Boukheddaden, Ohkoshi, Chem. Mater. 20 (2008) 423.
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 Experimental discoveries by Tanimura and Kanazaki

1. Exciting light (1.6 eV) should be polarized perpendicular to layer. 
 
2. Nonlinear and multi-photon process, less than 10 photons. 
4 
 
3. Too strong excitation is rather harmful, resulting in two layers abrasion. 
 
4. Femto-second pulse excitation, not nano-second 
 
5. Resultant domain size includes about 1000 carbons 
 
6. Structural phase transition due to inter-layer bond formation ( STM image ) 
 
7. Resultant domain is quite stable( , more than 10 days ) 



 

STM image of graphite before and after
the illumination by photons (1.6 eV) 
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Kanasaki, 
Inami, 
Tanimura, 
Ohnishi, 
Nasu,  PRL 
102 (2009) 
087402.



 

 

Exciting light should be polarized 
     perpendicular to the layer, 

parallel component gives no effect. 



Raman, Murooka, Ruan, Yang, Berber and Tomanek, Phys.Rev.Lett. 101(2008) 077401.
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Direct observation of optically induced transient structures 
in graphite using ultrafast electron crystallography



Scenario for early stage
Spontaneous, successive broken symmetries



Inferred inter-layer bond structure

Diaphite

Research 
highlight, 
2009, 
Nature 
( London) 
458, 129.
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Shirotani, Inokuchi, Mol.Cryst.Liq.Cryst. 461(2007)93.

Local shear type displacement



Hexagonal graphite – [ABAB] stacking



Graphite(sp2) and diamond(sp3) structures

R = 3.35 Å

θ = 90.0○

B = 1.42 Å 

θ = 109.47○

R = 1.54 Å

B = 1.54 Å 

LDF calculations by L. Cohen, S. Fahy and S.G. Louie



LDF calculation for graphite-diamond transition

Energy barrier ～ 0.3 eV/carbon

S. Fahy et al, Phys. Rev. B35(1987)7623. Tateyama et al, Phys Rev.B54(1996)14994.

However, it is a hypothetical uniform  transformation. 

All the macroscopic number of carbons are assumed  
to move simultaneously ? 

Real process is an iterative local domain formation,  
never be simultaneous.

More high barrier

Local domain formation is the essential process.
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Comparison
Brenner’s potential

• Semi-empirical inter-atomic 
potential, 3- or 4- body force, 
Direction of chemical bonds,

• Gives proper data for both
graphite and diamond 
structures,
・Short range (2.0 ) –

No information about 
interalyer coupling

Lennard-Jones’ potential

• Two body potential,

・Depends only on bond
length

・ No information for 
chemical bond structure 
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New domain structure by Brenner potential 

Radosinski, Nasu,  Luty  
Radosz, PRB 81(2010) 035417.
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LDF theory for new domain structure



Aδ,Δz  Ohnishi, Nasu, PRB 
79 (2009) 054111.
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500 carbons



High energy “L2” diaphite domain by Brenner

Ohnishi, Nasu, PRB 80 (2009)014112.
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087402.
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New localized states and pseudo gap
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Electron-hole dimerization  v.s.  Charge separation  

Free carrier 
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Early time critical dynamics
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increases





 

xk

)0,k( x

π Density of states arbi. unit

)k,k( xx

22)( xx kkkE 

Fe

Fe



eF



 

hole 
 

e-h 
attraction 
 

electron 
 

e-h relative 
    space

Bloch 
wave 
k(=0) 

 

Phonons
only at 
center 

Theory for dynamics  
Bloch wave of (electron, hole and multi-phonon) coupled system 

with total momentum k (= 0)  
Attraction depends on phonon

),( yx 

e-h distance 
 

Cho, Toyozawa, JPSJ 30, 1555 (1971)



nex

Free carrier dissipation and self-localization dynamics

Nishioka, Nasu, 
PRB 80 (2009)235420. ω＝0.1eV



Classical dynamics of inter-layer σ-bond formation 
after self-localization

time:  t
pico-sec.

Nishioka, 
Nasu, PRB 
80 (2009)
235420.
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Dynamics of σ-bond formation after self-localization

Nishioka, 
Nasu, 
PRB 80 
(2009) 
235420.





0.0 ps 1.0 psInter-layer shear

Inter-layer distance

Excitation density：10% ( 6240 × 0.1 = 624 excited sites ) 

Nishioka, Nasu, PRB, 
82(2010)035440(1-7).
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Two excitations,  excitation density： 6%
Importance of shear fluctuation at the time of pulse excitation

Inter layer  
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Inter layer distanceFirst hν

Frozen   
shear

Nishioka, Nasu, Yonemitsu, 
J. Phys. CM.  24 (2012) 205402. Inter layer shear 
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Two possible ways of excitation






